cho phân số A= [(x+1)/(x-1) - (x-1)/(x+1) - (x^2- 4x-1)/(1-x^2) ] * (x+2014)/(x+1) . Rút gọn phân số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)
\(=x^2-4x+4-x+9=x^2-5x+13\)
Bài 2 :
a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)
\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)
b, Thay x = -4 ta được :
\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)
\(a,=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}=\dfrac{x+1}{x}\\ b,=\dfrac{-\left(x^2-5x-6\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+1\right)\left(x-6\right)}{\left(x+2\right)^2}\)
a) ĐKXĐ : \(x\ne\pm1\)
+ \(B=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x^2-4x-1\right)}{x^2-1}\right)\cdot\frac{x-2014}{x-1}\)
\(B=\frac{4x+x^2-4x-1}{x^2-1}\cdot\frac{x-2014}{x+1}\)
\(B=\frac{x^2-1}{x^2-1}\cdot\frac{x-2014}{x+1}=\frac{x-2014}{x+1}\)\
b) B có giá trị nguyên
\(\Leftrightarrow x-2014⋮x+1\)
\(\Leftrightarrow x+1-2015⋮x+1\)
\(\Leftrightarrow2015⋮x+1\)
\(a,\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\\ b,\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(4-x\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(x+4\right)}{x}\\ c,\dfrac{x^2+6x+9}{2x+6}=\dfrac{\left(x+3\right)^2}{2\left(x+3\right)}=\dfrac{x+3}{2}\)
\(d,\dfrac{x^2+x}{x^2+4x+3}=\dfrac{x\left(x+1\right)}{\left(x^2+x\right)+\left(3x+3\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)+3\left(x+1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\dfrac{x}{x+3}\)
\(e,\dfrac{x^2-x+1}{x^3+1}=\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x+1}\\ f,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
a) \(\dfrac{2\left(x+1\right)^2}{4x\left(x+1\right)}\left(x\ne0;x\ne-1\right)\)
\(=\dfrac{2\left(x+1\right)^2:2\left(x+1\right)}{4x\left(x+1\right):2\left(x+1\right)}\)
\(=\dfrac{x+1}{2x}\)
b) \(\dfrac{\left(8-x\right)\left(-x-2\right)}{\left(x+2\right)^2}\left(x\ne-2\right)\)
\(=\dfrac{-\left(8-x\right)\left(x+2\right)}{\left(x+2\right)^2}\)
\(=\dfrac{-\left(8-x\right)}{x+2}\)
\(=\dfrac{x-8}{x+2}\)
c) \(\dfrac{2\left(x-y\right)}{y-x}\left(x\ne y\right)\)
\(=\dfrac{2\left(x-y\right)}{-\left(x-y\right)}\)
\(=-2\)
d) \(\dfrac{\left(x+2\right)^2}{2x+4}\left(x\ne-2\right)\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
ĐKXĐ: \(x\neq0;x\neq-1\)
\(\dfrac{2(x+1)^2}{4x(x+1)}=\dfrac{2(x+1)}{4x}=\dfrac{x+1}{2x}\)
$---$
ĐKXĐ: \(x\neq-2\)
\(\dfrac{(8-x)(-x-2)}{(x+2)^2}=\dfrac{-(8-x)(x+2)}{(x+2)^2}=\dfrac{x-8}{x+2}\)
$---$
ĐKXĐ: \(x\neq y\)
\(\dfrac{2(x-y)}{y-x}=\dfrac{-2(y-x)}{y-x}=-2\)
$---$
ĐKXĐ: \(x\neq-2\)
\(\dfrac{(x+2)^2}{2x+4}=\dfrac{(x+2)^2}{2(x+2)}=\dfrac{x+2}{2}\)
1: \(B=\dfrac{6x+x^2-3x}{\left(x+3\right)\left(x-3\right)}=\dfrac{x^2+3x}{\left(x+3\right)\left(x-3\right)}=\dfrac{x}{x-3}\)