viết phân thức sau dưới dạng 1 phân thức có tử là \(x^3-y^3\)
\(\dfrac{x-y}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+xy+y^2}{x-y}=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}=\frac{x^3-y^3}{\left(x-y\right)^2}\)
\(\frac{x^2+xy+y^2}{x-y}\)
\(=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}\)
\(=\frac{x^3-y^3}{x^2-2xy+y^2}\)
\(a,5\left(x-y\right)-3x\left(y-x\right)=5\left(x-y\right)+3x\left(x-y\right)=\left(5+3x\right)\left(x-y\right)\\ b,x^2-4xy+4y^2=\left(x-2y\right)^2\\ c,\left(x+1\right)^2+x\left(5-x\right)=0\\ \Rightarrow x^2+2x+1+5x-x^2=0\\ \Rightarrow7x+1=0\\ \Rightarrow7x=-1\\ \Rightarrow x=-\dfrac{1}{7}\)
a: =(x-y)(5+3x)
c: \(\Leftrightarrow x^2-2x+1+5x-x^2=0\)
hay x=-1/3
Lời giải:
a. $(x^3+x^2y+xy^2+y^3)(x-y)=[x^2(x+y)+y^2(x+y)](x-y)$
$=(x^2+y^2)(x+y)(x-y)=(x^2+y^2)(x^2-y^2)=x^4-y^4$
b.
$(2x-1)(x+3)=2x(x+3)-(x+3)=2x^2+6x-x-3=2x^2+5x-3$
a)Ta có:
Để phân thức là số nguyên thì phải là số nguyên (với giá trị nguyên của x).
nguyên thì x +2 phải là ước của 3.
Các ước của 3 là . Do đó
Vậy
Cách khác:
=
\(\dfrac{x-y}{x+y}\)=\(\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}\)=\(\dfrac{x^3-y^3}{x^3+2x^2y+2xy^2+y^3}\)