K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

6 tháng 7 2019

7 tháng 4 2023

\(z^2-2\left(2m-1\right)z+m^2=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

Ta có :

\(z^2_1+z_2^2=2\)

\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)

\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)

\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)

\(\Leftrightarrow14m^2-16m+2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)

10 tháng 4 2023

Ta có phương trình bậc hai trên tập số phức:

z^2 - 2(2m-1)z + m^2 = 0

Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:

z1 + z2 = 2(2m-1) và z1z2 = m^2

Từ phương trình z1^2 + z2^2 = 2, ta suy ra:

(z1+z2)^2 - 2z1z2 = 4

Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:

(2(2m-1))^2 - 2m^2 = 4

Đơn giản hóa biểu thức ta có:

m^2 - 4m + 1 = 0

Suy ra:

m = 2 + √3 hoặc m = 2 - √3

Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.

Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.

24 tháng 1 2019

Đáp án C.

Đặt t = sin x , t ∈ − 1 ; 1 . Phương trình đã cho trở thành  2 t + 1 t + 2 = m    (*).

Để phương trình đã cho có đúng hai nghiệm thuộc đoạn 0 ; π  thì phương trình (*) phải có đúng một nghiệm thuộc nửa khoảng 0 ; 1 .

Xét hàm số f t = 2 t + 1 t + 2 . Ta có  f ' t = 3 t + 2 2   .

Bảng biến thiên của :

 

Vậy để phương trình (*) có đúng một nghiệm thuộc nửa khoảng 0 ; 1  thì m ∈ 1 2 ; 1 . Vậy C là đáp án đúng

 

28 tháng 4 2019

Đáp án C

28 tháng 2 2017

3 tháng 4 2019

7 tháng 2 2018

17 tháng 11 2018

1 tháng 11 2018