Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Hỏi hàm số y = f f x + 2 có bao nhiêu điểm cực trị?
A. 12
B. 11
C. 9
D. 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: Một số em có thể sẽ quên mất khi xét số nghiệm của phương trình f(x) = 0 có 3 nghiệm phân biệt mà không loại nghiệm kép dẫn đến chọn nhầm đáp án C là sai.
Dựa vào đồ thị hàm số ta thấy hàm số có 3 điểm cực trị
Xét hàm số có
.
.
Phương trình có 2 nghiệm đơn phân biệt.
Phương trình có 2 nghiệm đơn phân biệt.
Phương trình có 2 nghiệm đơn phân biệt.
Các nghiệm này không trùng nhau, do đó phương trình y’ = 0 có 9 nghiệm phân biệt (không trùng nhau),
Các nghiệm đều là nghiệm đơn. Do vậy hàm số có 9 điểm cực trị
Chọn D
Chọn D.
Phương pháp:
Xác định điểm trên đồ thị hàm số mà tại đó có đạo hàm đổi dấu.
Cách giải:
Quan sát đồ thị hàm số ta thấy, hàm số đạt cực trị tại 2 điểm x = 0, x = 1
Chọn D
Ta có
.
Suy ra đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị hàm số y= f’(x) theo phương song song với trục Oy xuống dưới đơn vị.
Ta có và dựa vào đồ thị của hàm số y= f’(x) , ta suy ra
đồ thị của hàm số y= g’(x) cắt trục hoành tại 4 điểm.
=> Hàm số y= g( x) có 4 cực trị .
Ta có
Suy ra đồ thị của hàm số g’ (x) là phép tịnh tiến đồ thị hàm số y= f’ (x) theo phương Oy xuống dưới đơn vị.
Ta có và dựa vào đồ thị của hàm số y= f’ (x), ta suy ra đồ thị của hàm số g’ (x) cắt trục hoành tại 4 điểm.
Chọn D.
Dựa vào hình vẽ, ta thấy (1) có 3 nghiệm phân biệt; (2) có 2 nghiệm phân biệt; (3) có 3 nghiệm phân biệt và các nghiệm trên đều là nghiệm đơn hoặc bội lẻ
Vậy hàm số đã cho có 3 + 3 + 2 + 3 = 11 điểm cực trị. Chọn B