Cho a,b là các số thực khác 0. Nếu l i m x → 1 x 2 + a x + b x − 1 = 2018 thì T = a + 2 b bằng bao nhiêu?
A. T = -2018.
B. T = -2017
C. T = 2017
D. T = 2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải:
cho m, n là các số thực khác 0. nếu \(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}=3\) thì m.n=?
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}\) hữu hạn khi \(x^2+mx+n=0\) có nghiệm \(x=1\)
\(\Rightarrow1+m+n=0\Rightarrow n=-m-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx-m-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+m+1\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x+m+1\right)=m+2\)
\(\Rightarrow m+2=3\Rightarrow m=1\Rightarrow n=-2\)
\(\Rightarrow mn=-2\)
Do giới hạn hữu hạn nên \(x^2+mx+n=0\) có nghiệm \(x=1\)
\(\Rightarrow1+m+n=0\Rightarrow n=-m-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx-m-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)+m\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1+m\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x+1+m\right)=m+2\)
\(\Rightarrow m+2=3\Rightarrow m=1\Rightarrow n=-2\)
1.
\(\lim\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\lim\dfrac{5\sqrt{3+\dfrac{1}{n}}}{2\left(3+\dfrac{2}{n}\right)}=\dfrac{5\sqrt{3}}{6}\Rightarrow a+b=11\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax+b}{x-2}=6\) khi \(x^2+ax+b=0\) có nghiệm \(x=2\)
\(\Rightarrow4+2a+b=0\Rightarrow b=-2a-4\)
\(\lim\limits_{x\rightarrow2}\dfrac{x^2+ax-2a-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)+a\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+a+2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(x+a+2\right)=a+4\Rightarrow a+4=6\Rightarrow a=2\Rightarrow b=-8\)
\(\Rightarrow a+b=-6\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)
Bài 2:
Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)
Mà theo BĐT AM-GM và Bunhiacopxky:
\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)
\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)
Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)
Đáp án A.