K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

 Đáp án A.

23 tháng 6 2017

Đáp án D

20 tháng 7 2019

Đáp án B

31 tháng 5 2017

Chọn D

5 tháng 6 2018

Chọn D

Cách giải:

NV
20 tháng 5 2020

a/\(\left(1+i\right)z=\frac{1}{z}\Leftrightarrow z^2\left(1+i\right)=1\Rightarrow z^2=\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2}i\)

\(\Rightarrow\) Phần ảo là \(-\frac{1}{2}\)

b/\(\frac{1}{z}=\frac{1}{2}+\frac{1}{2}i\Rightarrow z=\frac{2}{1+i}\Rightarrow z=1-i\)

Phần ảo là -1

c/ Áp dụng công thức tổng CSN với \(u_1=i\) ; \(q=i\); \(n=100\)

\(i+i^2+...+i^{100}=i.\frac{i^{101}-1}{i-1}=\frac{i^{102}-i}{i-1}=\frac{\left(i^2\right)^{51}-i}{i-1}=\frac{-1-i}{i-1}=i\)

d/ Tương tự câu trên:

\(1+\left(1+i\right)+...+\left(1+i\right)^{20}=1+\left(1+i\right).\frac{\left(1+i\right)^{21}-1}{1+i-1}=-2048+i\)

8 tháng 5 2019

Đáp án A

 z có phần ảo là 2.

12 tháng 4 2019

5 tháng 10 2017

20 tháng 4 2021

undefined