Cho a,b là các số thực dương a>1,a#b và thỏa mãn log a b = 2 . Khi đó log a b a b bằng
A. - 3 2
B. -6
C. 3 2
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel,ta có:
\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{1}{1+2}=\frac{1}{3}^{\left(đpcm\right)}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\\frac{a}{a+1}=\frac{b}{b+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+a=ab+b\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy ...
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra <=> \(a=1;\)\(b=2\)
Vậy MIN P = 11 Khi a = 1; b = 2
Bài này là BĐT cosi
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)
\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2
cho a, b, c là các số thực dương thỏa mạn abc=1 chứng minh rằng a/(2b+a) +b/(2c+b)+c/(2a+c)>=1
Áp dụng bất đẳng thức Cauchy ta có
\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
tương tự ta có
\(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(c+1\right)\left(a+1\right)}};\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
khi đó ta được
\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\Rightarrow ab\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)
Áp dụng tương tự ta được\(bc\ge\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1};ca\ge\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)
Cộng theo vế các bất đẳng thức trên ta được
\(ab+bc+ca\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)
mặt khác theo bất đẳng thức Cauchy ta lại có
\(\frac{\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\ge3\)
suy ra \(ab+bc+ca\ge12\)vậy bất đẳng thức được chứng minh
đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)
Đổi về cơ số a có
log a b a b = log a a b log a a b = 1 2 1 + log a b 1 - log a b = 1 2 ( 1 + 2 ) 1 - 2 = - 3 2
Chọn đáp án A.