Cho hàm số y = x 4 − 2 m x 2 + 2 m . Xác định tất cả các giá trị của m để đồ thị hàm số có ba điểm cực trị và các điểm cực trị này lập thành một tam giác có diện tích bằng 32.
A. m = 4 , m = 1
B. m = 4
C. m = - 4
D. m = − 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
y ' = 4 x 3 − 4 m x = 4 x ( x 2 − m ) y ' = 0 ⇔ x = 0 x = ± m ⇒ A ( 0 ; 2 m ) , B ( m ; − m 2 + 2 m ) , C ( − m ; − m 2 + 2 m ) ⇒ S = 1 2 . 2 m + m 2 − 2 m .2 m = m 2 m = 32 ⇒ m = 4
Đáp án A
Phương pháp giải:
Tìm tọa độ điểm cực trị của đồ thị hàm số trùng phương và tính diện tích tam giác
Lời giải: TXĐ : D = R
Ta có R
Phương trình
Hàm số có 3 điểm cực trị ó (*) có 2 nghiệm phân biệt khác
Khi đó
Gọi ; là ba điểm cực trị. Tam giác ABC cân tại A.
Trung điểm H của BC là
Và
Diện tích tam giác ABC là
Mà R suy ra
Vậy Smax = 1 Dấu bằng xảy ra khi và chỉ khi m = 0
Chọn C
[Phương pháp tự luận]
Hàm số có cực đại , cực tiểu khi và chỉ khi m < 1
Tọa độ điểm cực trị A ( 0 ; m + 1 )
Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0
Vậy S đạt giá trị lớn nhất ⇔ m = 0
[Phương pháp trắc nghiệm]
Vậy S đạt giá trị lớn nhất ⇔ m = 0
Chọn D.
TXĐ: D = R.
Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt ⇔ m -1 > 0 ⇔ m > 1(*)
3 điểm cực trị của đồ thị hàm số là: A(0;1),
Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng
Ta có
Kết hợp với điều kiện (*) => m = 2
Làm theo bào toán trắc nghiệm như sau:
Hàm số đã cho có 3 điểm cực trị khi ab < 0
Chỉ có đáp án D thỏa mãn.
Chọn D
Ta có y ' = 3 x 2 - 6 m x + m - 1
Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0 có hai nghiệm phân biệt
Điều này tương đương
Hai điểm cực trị có hoành độ dương
Vậy các giá trị cần tìm của m là m >1
Đáp án D
Ta có y’ = 4mx3 – 2(m – 1)x.
y' = 0 ó 4mx3 – 2(m – 1)x = 0 ó
Để hàm số có 3 điểm cực trị
Đáp án B
Ta có y ' = 4 x 3 − 4 m x = 4 x x 2 − m
Đồ thị hàm số có 3 điểm cực trị ⇔ y ' = 0 có ba nghiệm phân biệt, suy ra m > 0
Khi đó tọa độ ba điểm cực trị là A 0 ; 2 m , B m ; 2 m − m 2 , C − m ; 2 m − m 2
Suy ra H 0 ; 2 m − m 2 là trung điểm BC
⇒ A H = m 2 B C = 2 m ⇒ S A B C = 1 2 A H . B C = 1 2 m 2 .2 m = 32 ⇒ m = 4