K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

cos φ = 14 4

Đáp án A

CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>(SC;(SAD))=(SC;SD)=góc DSC

SD=căn SA^2+AD^2=a*căn 7

DC=a

SC=căn SA^2+AC^2=3a

\(cosDSC=\dfrac{SD^2+SC^2-DC^2}{2\cdot SD\cdot SC}=\dfrac{9a^2+7a^2-a^2}{2\cdot3a\cdot a\sqrt{7}}=\dfrac{5\sqrt{7}}{14}\)

=>góc DSC=19 độ

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

6 tháng 8 2019

Chọn đáp án C

Ta có

 

⇒ A C  là hình chiếu của SC trên mặt phẳng (ABCD)

 

Lại có ABCD là hình vuông cạnh a nên A C = a 2  

Tam giác SAC vuông tại A nên S A = A C . tan S C A ⏜ = a 6  

Vậy thể tích khối chóp S.ABCD là V A B C D = a 3 6 3 (đvtt).

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

26 tháng 4 2018

Đáp án C.

25 tháng 9 2019

Đáp án là B

9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

28 tháng 11 2017

Đáp án C

Gọi H, M lần lượt là trung điểm của AD, BC.

 AD // (SBC) Þ d(AD, SC) = d(AD,(SBC)) = d(H,(SBC))

Trong tam giác SHM kẻ HK ^ SM tại K