K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Đáp án C

Ta có diện tích tam giác đều cạnh a là S = a 2 3 4

  ⇒ V S . A B C = 1 3 S A . d t A B C = 1 3 a . a 2 3 4 = a 3 3 12

NV
1 tháng 4 2021

Gọi M là trung điểm SA và O là tâm đáy \(\Rightarrow AO=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\) ; \(AM=\dfrac{a}{2}\)

Qua O kẻ đường thẳng d song song SA, trong mặt phẳng (SAO) qua M kẻ đường thẳng song song AO cắt d tại I

\(\Rightarrow I\) là tâm mặt cầu ngoại tiếp chóp

\(R=IA=\sqrt{IM^2+AM^2}=\sqrt{AO^2+AM^2}=\dfrac{a\sqrt{21}}{6}\)

30 tháng 7 2018

Đáp án C

24 tháng 8 2018

27 tháng 2 2019

Đáp án B

14 tháng 9 2017

30 tháng 8 2016

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Kẻ $SH$ vuông góc với $SB$

Vì $SA$ vuông góc với đáy nên \(SA\perp BC\). Tam giác $ABC$ vuông tại $B$ nên \(AB\perp BC\)

Ta có:
\(\left\{\begin{matrix} SA\perp BC\\ AB\perp BC\end{matrix}\right.\Rightarrow (SAB)\perp BC\)

\(AH\subset (SAB)\Rightarrow AH\perp BC\)

Kết hợp với \(AH\perp SB\Rightarrow AH\perp (SBC)\)

Do đó \(d(A,(SBC))=AH\)

Xét tam giác $SAB$ vuông tại $A$ có đường cao $AH$ thì theo hệ thức lượng trong tam giác vuông ta có:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{SA^2}=\frac{1}{a^2}+\frac{1}{a^2}\)

\(\Rightarrow AH=\frac{a\sqrt{2}}{2}\)

Vậy \(d(A,(SBC))=\frac{a\sqrt{2}}{2}\)

NV
19 tháng 4 2019

S A B C N M H

\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)

b/ Gọi N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAB

\(\Rightarrow MN//SB\Rightarrow SB//\left(CMN\right)\)

\(\Rightarrow d\left(SB;CM\right)=d\left(SB;\left(CMN\right)\right)=d\left(S;\left(CMN\right)\right)\)

Mặt khác SA cắt \(\left(CMN\right)\) tại N

\(NS=NA=\frac{1}{2}SA=a\Rightarrow d\left(S;\left(CMN\right)\right)=d\left(A;\left(CMN\right)\right)\)

\(CM=\sqrt{BC^2+BM^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

Kẻ \(AH\perp CM\Rightarrow\Delta MHA\sim\Delta MBC\) (tam giác vuông có 1 góc đối đỉnh)

\(\Rightarrow\frac{AH}{BC}=\frac{AM}{CM}\Rightarrow AH=\frac{BC.AM}{CM}=\frac{a\sqrt{5}}{5}\)

Từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(CMN\right)\right)\)

\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{AN.AH}{\sqrt{AN^2+AH^2}}=\frac{a\sqrt{6}}{6}\)