Cho hàm số y=f(x) có đồ thị như hình vẽ bên.Phương trình f x − 2 − 2 = π có bao nhiêu nghiệm thực phân biệt
A.6
B.3
C.2
D.4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = t ( x ) = 2 x + 2 - x với x ∈ [ - 1 ; 2 ]
Hàm t=t(x) liên tục trên [-1;2] và
t ' ( x ) = 2 x ln 2 - 2 - x ln 2 , t ' ( x ) = 0 ⇔ x = 0
Bảng biến thiên
Vậy x ∈ [ - 1 ; 2 ] ⇒ t ∈ 2 ; 17 4
Với mỗi t ∈ ( 2 ; 5 2 ] có 2 giá trị của x thỏa mãn t = 2 x + 2 - x
Với mỗi t ∈ 2 ∪ 5 2 ; 17 4 có duy nhất 1 giá trị x thỏa mãn.
Xét phương trình f(t)=m với t ∈ 2 ; 17 4
Từ đồ thị, phương trình f ( 2 x + 2 - x ) = m có số nghiệm nhiều nhất khi và chỉ khi phương trình f(t)=m có 2 nghiệm t 1 , t 2 , trong đó có t 1 ∈ ( 2 ; 5 2 ] , t 2 ∈ ( 5 2 ; 17 4 ]
Khi đó, phương trình có nhiều nhất 3 nghiệm phân biệt thuộc đoạn [-1;2]
Chọn đáp án B.
Đáp án là C.
Số nghiệm của phương trình f x − 2 − 2 = π bằng số giao điểm của đường thẳng y = π và đồ thị hàm số y = f x − 2 − 2 .Ta có đồ thị hàm số y = f x − 2 − 2 như sau:
Dựa vào đồ thị hàm số ta thấy phương trình f x − 2 − 2 = π có hai nghiệm thực phân biệt.