Cho chuyển động thẳng xác định bởi phương trình s = 1 2 t 4 + 3 t 2 , t (giây), s được tính bằng m. Vận tốc của chuyển động tại t = 4 (giây) là:
A. 0m/s
B. 200m/s
C. 150m/s
D. 140m/s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có s = 1 2 g t 2 => s ' ( t ) = g . t = v ( t )
Khi đó v ( 5 ) = 9 , 8.5 = 49 m/s
Chọn đáp án A
Chọn D.
Gia tốc chuyển động tại t = 3s là s”(3)
Ta có: s’(t) = 54 và s’’(t) = 0
Vậy vật chuyển động với gia tốc là 0 nên tại t = 3 thì a = 0.
Vận tốc tức thời của chuyển động tại \(t = 2\) là:
\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)
Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)
Chọn B.
Ta có s’(t) = 3t2 + 10t ; s”(t) = 6t.
Do đó gia tốc chuyển động có phương trình a(t) = 6t.
Gia tốc của chuyển động tại t = 2 là : a(2) = 6.2 = 12
- Gia tốc tức thời của chuyển động tại thời điểm t bằng đạo hàm cấp hai của phương trình chuyển động tại thời điểm t.
- Ta có:
- Suy ra, phương trình gia tốc của chuyển động là:
a(t) = s’’(t) = 6t – 6 ( m / s 2 )
- Do đó, gia tốc của chuyển động khi t = 3 là: a(3) = 12 ( m / s 2 )
Chọn D.
Đáp án D
v = ( s ) ' = 2 t 3 + 3 t v ( 4 ) = 2.4 3 + 3.4 = 140