K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

Chọn đáp án D

Phương pháp

Sử dụng công thức chỉnh hợp.

Cách giải

Số các số tự nhiên có 4 chữ số khác nhau được tạo thành từ X={1;3;5;8;9} là  A 5 4  số

15 tháng 7 2017

18 tháng 6 2023

Các số có 4 chữ số có dạng: \(\overline{abcd}\)

Trong đó

\(a\) có 3 cách chọn

\(b\) có 3 cách chọn

\(c\) có 2 cách chọn

\(d\) có 1 cách chọn

Số các số có 4 chữ số khác nhau được lập từ 4 chữ số đã cho là:

\(\times\) 3 \(\times\) 2 \(\times\) 1 = 18 (số)

Vậy tập Y có 18 phần tử

 

     

2 tháng 11 2017

Ta có các trường hợp sau xảy ra:

Trường hợp 1: Số tạo thành gồm 3 chữ số lẻ và 4 chữ số chẵn:

Bước 1: Chọn 3 số lẻ trong 5 số lẻ, có  cách.

Bước 2: Xếp 3 số lẻ vừa chọn với 4 chữ số chẵn thành một dãy, có 7! cách xếp.

Vậy có số.

Trường hợp 1: Số tạo thành gồm 5 chữ số lẻ và 2 chữ số chẵn:

Bước 1: Chọn 2 chữ số chẵn trong 4 số chẵn, có  cách.

Bước 2: Xếp 2 chữ số chẵn vừa chọn với 5 chữ số lẻ thành một dãy, có 7! Cách xếp.

Vậy có số.

Kết luận có 50400+30240=80640 số thỏa yêu cầu.

Chọn A.

16 tháng 6 2016

A.có 9 số tự nhiên có hai chữ số khác nhau tạo thành

B.có 12 số tự nhiên có 3 chữ số khác nhau tạo thành

C.có 18 số tự nhiên có 4 chữ số khác nhau tạo thành

3 tháng 9 2019

Đáp án D.

10 tháng 5 2019

Gọi số cần tìm là \(\overline{abcdef}\)

TH1: 0,1,2 là 3 số cuối

=>\(\overline{abc012};\overline{abc210}\)

a có 6 cách

b có 5 cách

c có 4 cách

=>CÓ 6*5*4*2=240 cách

TH2: \(\overline{ab\left\{0,1,2\right\}f}\)

0,1,2 có 3!=6 cách

a có 5 cách

b có 4 cách

f có 3 cách

=>Có 360 cách

TH3: \(\overline{a\left\{0,1,2\right\}ef}\)

0,1,2 có 3!=6 cách

f có 2 cách

e có 5 cách

a có 4 cách

=>Có 6*3*5*4=360 cách

TH4: \(\overline{\left\{0,1,2\right\}def}\)

{0;1;2} có 4 cách

f có 3 cách

d có 5 cách

e có 4 cách

=>Có 4*3*5*4=240 cách

=>Có 120+120+360+360+240=1200 cách

7 tháng 5 2023

TH1 (012)def : chọn a từ (1,2) có 2 cách

chọn b từ (012)/(a) có 2 cách

chọn c từ (012)/(ab) có 1 cách

chọn f chẵn từ (4,6) có 2 cách

với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách

vậy có  2.2.1.4A2.2 số

TH2 a(012)ef 

xếp chỗ cho 3 số (012) có 3! cách

chọn f từ (4,6) có 2 cách 

chọn ae từ 4 số còn lại và xếp có 4A2 cách

 vậy có 3!.2.4A2 số 

TH3  ab(012)f

tương tự TH2

TH4 : abc(012):

chọn f chẵn từ (0,2)  có 2 cách

chọn e từ (012)/(a) có 2 cách

chọn d từ (012)/(ab) có 1 cách

với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách

vậy có 2.2.1.5A3 số 

tổng 4 TH ta có 

2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số

 

 

15 tháng 2 2018

Các số tự nhiên nhỏ hơn 10000 có thể là số có 4 chữ số hoặc số có 3 chữ số hoặc số có 2 chữ số   hoặc số có 1 chữ số.

     ·     Trường hợp 1: số cần tìm có 4 chữ số là  

      Có 4 cách chọn a từ năm số đã cho ( a khác 0).

      Có 4 cách chọn b.

      Có 3 cách chọn c.

      Có 2 cách chọn d.

        Theo quy tắc nhân có : 4.4.3.2=96 số có 4 chữ số thỏa mãn đầu bài.

     ·      Trường hợp 2: số cần tìm có ba chữ số

        Có 4 cách chọn a từ năm số đã cho.

        Có 4 cách chọn b.

        Có 3 cách chọn c.

         Theo quy tắc nhân có : 4.4.3=48 số có 3 chữ số thỏa mãn đầu bài.

     ·  Trường hợp 3: số cần tìm có hai chữ số

        Có 4 cách chọn a từ năm số đã cho.

        Có 4 cách chọn b.

        Theo quy tắc nhân có 4.4=16 số có 2 chữ số thỏa mãn.

    ·  Trường hợp 4: số cần lập có 1 chữ số: có 5 số thỏa mãn.

Vậy theo quy tắc cộng có 96+48+16+5=165 số thỏa mãn đầu bài.

Chọn  C.