Cho a,b là các số thực dương. Mệnh đề nào dưới đây là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trắc nghiệm này kinh thật :D
\(P=\left(1+36abc\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+36\left(ab+bc+ca\right)\)
\(P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+36\left(ab+bc+ca\right)\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)
\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{\left(2a+2b+2c\right)^2}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge2\sqrt{\dfrac{144\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)
Vậy \(P\ge21\)
Đáp án B
Ta có a 3 4 > a 4 3 ⇒ 0 < a < 1 ( d o 3 4 < 4 3 )
Mặt khác log b 1 2 < log b 2 3 ⇒ b > 1 ( d o 2 3 > 1 2 )