K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Đáp án là A

NV
6 tháng 2 2021

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\)

\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\widehat{BSM}\) là góc giữa SB và (SAC)

\(AC=a\sqrt{2}\) ; \(AM=BM=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)

\(SA=\sqrt{SC^2-AC^2}=a\Rightarrow SB=a\sqrt{2}\)

\(sin\widehat{BSM}=\dfrac{BM}{SB}=\dfrac{1}{2}\Rightarrow\widehat{BSM}=30^0\)

8 tháng 7 2019

Đáp án B

Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.

=> IA = IB = IC = IH = IK

Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.

Suy ra bán kính R =  2 π a 3 3

21 tháng 4 2018

28 tháng 7 2019

Đáp án B

Gọi I, E, F lần lượt là trung điểm của AC, AB, HC.

IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.

Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB. Suy ra bán kính  R = a 2 2

10 tháng 10 2017

Đáp án B

Gọi I, E, F lần lượt là trung điểm của AC, AB, HC. IE là trục đường tròn ngoại tiếp tam giác AHB, IF là trục đường tròn ngoại tiếp tam giác HKC.

⇒ IA=IB=IC=IH=IK

Suy ra I là tâm mặt cầu ngoại tiếp tứ diện AHKB.

Suy ra bán kính R= a 2 2

15 tháng 12 2018

Đáp án A

Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi O là trung điểm của AC, suy ra OM // SA. Mà

25 tháng 3 2018

Ta có AC = 5

S A B ⊥ A B C S A C ⊥ A B C S A = S A B ∩ S A C ⇒ S A ⊥ A B C ⇒ S C A ^ = 45 o ⇒ S A = S C = 5

Do đó

V = 4 3 π SC 2 3 = 4 3 π 5 2 2 3 = 125 π 2 3

Đáp án D

16 tháng 2 2017

Đáp án D

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)