Cho hình lăng trụ tứ giác ABCD A'B'C'D' có đáy ABCD là hình vuông cạnh a và thể tích bằng 3 a 3 . Tính chiều cao h của hình lăng trụ đã cho.
A. h = a 3 .
B. h = a .
C. h = 9 a .
D. h = 3 a .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Đường cao của hình lăng trụ là
h = V S A B C D = 3 a 3 a 2 = 3 a
Đáp án B
V A B C D . A ' B ' C ' D ' = S A B C D . h ⇒ h = a 3 a 2 = a
Đáp án D
Gọi H là trung điểm của BC, kẻ H K ⊥ C ' D ' K ∈ C ' D '
Suy ra B H ⊥ A ' B ' C ' D ' ⇒ A C ' D ' ; A ' B ' C ' D ' ^ = B K H ^
Tam giác A’C’D’ đều cạnh 2 a ⇒ H K = d A ' ; C ' D ' = a 3
Tam giác BHK vuông tại H ⇒ B H = tan 60 ∘ x H K = 3 a
Diện tích hình thoi A’B’C’D’ là S A ' B ' C ' D ' = 2 a 2 3 .
Vậy thể tích khối lăng trụ ABC.A’B’C’D’ là V = B H . S A ' B ' C ' D ' = 3 a .2 a 2 3 = 6 3 a 3
Đáp án C
Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC
Ta có: R = B C 2 sin A = a 2 sin 60 ° = a 3
Thể tích V của khối trụ ngoại tiếp lăng trụ là:
V = πR 2 h = π a 3 2 . h = πa 2 h 3 .
Đáp án B
V A B C D . A ' B ' C ' D ' = S A B C D . h ⇒ h = a 3 a 2 = a