Trong không gian với hệ tọa độ Oxyz, trong các mặt cầu dưới đây mặt cầu nào có bán kính R = 3?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 26: Đáp án A.
Phương pháp:
d 2 + r 2 = R 2
Trong đó, d: khoảng cách từ tâm O đến mặt phẳng (P),
r: bán kính đường tròn là giao tuyến của mặt cầu (S) và mặt phẳng (P),
R: bán kính hình cầu.
Cách giải:
S : x + 3 2 + y 2 + z − 1 2 = 10 có tâm I − 3 ; 0 ; 1 , bán kính R = 10 .
S ∩ P là một đường tròn có bán kính r = 3.
Ta có:
R 2 = d I ; P 2 + r 2 ⇔ 10 = d I ; P 2 + 3 2 ⇔ d I ; P = 1
+) P 1 : x + 2 y − 2 z + 8 = 0 :
d I ; P 1 = − 3 + 2.0 − 2.1 + 8 1 2 + 2 2 + − 2 2 = 1 ⇒ P 1 :
Thỏa mãn.
+) P 2 : x + 2 y − 2 z − 8 = 0 :
d I ; P 2 = − 3 + 2.0 − 2.1 − 8 1 2 + 2 2 + − 2 2 = 13 3 ≠ 1 ⇒ P 2 :
Không thỏa mãn.
+) P 3 : x + 2 y − 2 z − 2 = 0 :
d I ; P 3 = − 3 + 2.0 − 2.1 − 2 1 2 + 2 2 + − 2 2 = 7 3 ≠ 1 ⇒ P 3 :
Không thỏa mãn.
+) P 4 : x + 2 y − 2 z − 4 = 0 :
d I ; P 4 = − 3 + 2.0 − 2.1 − 4 1 2 + 2 2 + − 2 2 = 3 ≠ 1 ⇒ P 4 :
Không thỏa mãn.
Mặt cầu (S) có tâm I(3;-2;0) và bán kính R = 3 2 + 0 + 2 2 + 12 = 5
Khoảng cách từ I đến (P) là
d(I,(P))= R 2 - r 2 = 5 2 - 3 2 = 4
Đối chiếu các đáp án ta thấy:
Đáp án A:
nên loại A.
Đáp án B:
nên loại B.
Đáp án C:
nên chọn C.
Chọn đáp án C.