Cho p=- x^2 -2*x + 1 = 0.cm p<0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,x+y=9;xy=14
a)
Ta có:\(x+y=9\)
=>\(\left(x-y\right)^2+4xy=81\)
=>\(\left(x-y\right)^2=81-4xy=81-4.14=25\)
=>\(x-y=-5\)hoặc \(x-y=5\)
Vậy..
b)Ta có:\(x+y=9\)
=>\(x^2+y^2=81-2xy=81-2.14=53\)
Vậy...
Bài2:
Ta có:
\(x+y+z=0\)
=>\(x^2+y^2+z^2+2xy+2xz+2yz=0\)
=>\(x^2+y^2+z^2=0\)
Với mọi x;y;z thì \(x^2\)>=0;\(y^2\)>=0;\(z^2\)>=0
=>\(x^2+y^2+z^2\)>=0
Để \(x^2+y^2+z^2=0\)thì
\(x^2=0\);\(y^2=0\);\(z^2=0\)
=>\(x=y=z=0\left(đpcm\right)\)
Bạn sửa lại điều kiện thành: 0<x<1 nhé :)
Đặt \(A=\frac{2}{1-x}+\frac{1}{x}\)
Áp dụng dụng bđt Bunhiacopxki, ta có :
\(A=\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\left(\sqrt{1-x}\right)^2+\left(\sqrt{x}\right)^2\right]\ge\left[\sqrt{\frac{2}{1-x}.\left(1-x\right)}+\sqrt{\frac{1}{x}.x}\right]^2\)
\(\Rightarrow A\ge\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\)
Bài này mình có áp dụng một chút phần căn thức lớp 9 :
- Nếu \(x\ge0\) thì \(x=\left(\sqrt{x}\right)^2\)
- \(\sqrt{x}.\sqrt{y}=\sqrt{xy}\)với \(x,y\ge0\)
điều kiền phải là : 0 < x < 1 . đặt \(P=\frac{2}{1-x}+\frac{1}{x}.\)
ta có : \(\frac{2}{1-x}=\frac{2-2x+2x}{1-x}=2+\frac{2x}{1-x}.\); \(\frac{1}{x}=\frac{x+1-x}{x}=1+\frac{1-x}{x}.\)
\(P=\frac{2}{1-x}+\frac{1}{x}=3+\frac{2x}{1-x}+\frac{1-x}{x}.\left(1\right).\)
Áp dụng BĐT Cô si cho hai số dương \(\frac{2x}{1-x}\)và \(\frac{1-x}{x}.\)ta được : \(\frac{2x}{1-x}+\frac{1-x}{x}\ge2\sqrt{\frac{2x.\left(1-x\right)}{\left(1-x\right).x}}=2\sqrt{2}.\)
Thay vào (1) ta được : \(P\ge3+2\sqrt{2}.\)dấu " =" xẩy ra khi \(x=\sqrt{2}-1\)
Đề có bị nhầm không? Vì \(p=-x^2-2x+1=0\)thì làm sao \(p< 0\)được?