Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
Bài 1:
\(2x^2+8x+30\)
\(=2\left(x^2+4x+15\right)\)
\(=2\left(x^2+4x+4+11\right)\)
\(=2\left(x+2\right)^2+22>0\forall x\)
Bài 2:
\(-x^2-2x-12\)
\(=-\left(x^2+2x+12\right)\)
\(=-\left(x^2+2x+1+11\right)\)
\(=-\left(x+1\right)^2-11< 0\forall x\)
a) Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
a) \(x^2-5x+8=\left(x^2-5x+6,25\right)+1,75=\left(x-2,5\right)^2+1,75\ge1,75>0\rightarrowđpcm\)
b) \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1< 0\rightarrowđpcm\)
A =x2 -5x +8 >0 với mọi x
= x2-5x+\(\dfrac{25}{4}+\dfrac{7}{4}\)
=\(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
do \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
=> A luôn lớn hơn 0 vs mọi x
B= -4x2 -4x-2 < 0 với mọi x
=-(4x2+4x+2)
=-4x2-4x-1-1
=-\(\left(4x^2+4x+1+1\right)\)
=-\(\left[4\left(x^2+x+\dfrac{1}{4}\right)+1\right]\)
= -\(\left[4\left(x+\dfrac{1}{2}\right)^2+1\right]\)
=-4\(\left(x+\dfrac{1}{2}\right)^2-1\)
do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=> -4 \(\left(x+\dfrac{1}{2}\right)^2\le0\)
=> \(-4\left(x+\dfrac{1}{2}\right)^2-1\le-1\)
vậy B luôn nhỏ hơn 0 vs mọi x
\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\) \(\forall x\)
Do x-x\(^2\le0\)\(\left(x^2\ge x\right)\)
---> \(x-x^2-1< 0\forall x\)
Chúc bạn học tốt
hơi ngán dạng này :((((
a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
b,
\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)
c,
\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,
\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))
\(x^2+2x+1+y^2=\left(x+1\right)^2+y^2\)
Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\y^2\ge0\end{matrix}\right.\) \(\forall x;y\)
\(\Rightarrow\left(x+1\right)^2+y^2\ge0\)
Dấu "=" vẫn xảy ra tại \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
\(x^4+2ax^2+a^2+2x^2+2a+1\)
\(=\left[\left(x^2\right)^2+2\cdot x^2\cdot a+a^2\right]+\left(2a+2x^2\right)+1\)
\(=\left(x^2+a\right)^2+2\left(x^2+a\right)+1\)=> hằng đẳng thức số 1
\(=\left(x^2+a+1\right)^2\ge0\forall a;x\)
Đề có bị nhầm không? Vì \(p=-x^2-2x+1=0\)thì làm sao \(p< 0\)được?