Gọi a, b là hai giá trị thực để hàm số f x = 2 x 2 + 6 3 − a x x 2 − 1 , x ≠ 1 a + b x + 2 , x = 1 liên tục tại x = 1. Biết rằng b = m n ; m ∈ ℤ , n ∈ ℕ và m n là phân số tối giản. Tính P = m + 2n
A. P = -17
B. P = =-5
C. P = -23
D. P = -13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
\(a,f\left(-1\right)=\left(-5\right)\left(-1\right)-3=5-3=2\\ f\left(\dfrac{2}{3}\right)=-5.\dfrac{2}{3}-3=\dfrac{-10}{3}-3=-\dfrac{19}{3}\)
\(b,y=-8\Rightarrow-8=-5x-3\Rightarrow-5=-5x\Rightarrow x=1\\ y=6\Rightarrow6=-5x-3\Rightarrow9=-5x\Rightarrow x=-\dfrac{9}{5}\)
a: f(-1)=5-3=2
f(2/3)=-10/3-3=-19/3
b: y=-8
=>-5x-3=-8
=>-5x=-5
hay x=1
y=6
=>-5x-3=6
=>-5x=9
hay x=-9/5
Chọn A