K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Chọn A

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

29 tháng 12 2018

Chọn C.

7 tháng 4 2018

Điều kiện: 

Bất phương trình 

Đối chiếu điều kiện ta được tập nghiệm S = (-1;1)\{0}

Chọn D.

18 tháng 4 2019

24 tháng 1 2017

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

NV
23 tháng 7 2021

- Với \(m=\dfrac{1}{2}\Rightarrow\left(x+1\right)^2>0\) có tập nghiệm \(R\backslash\left\{-1\right\}\) thỏa mãn

- Với \(m>\dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-1\\x< -2m\end{matrix}\right.\) hay \(D=\left(-\infty;-2m\right)\cup\left(-1;+\infty\right)\)

Thỏa mãn do \(\left(1;+\infty\right)\subset\left(-1;+\infty\right)\)

- Với \(m< \dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-2m\\x< -1\end{matrix}\right.\) hay \(D=\left(-\infty;-1\right)\cup\left(-2m;+\infty\right)\)

Tập nghiệm của BPT chứa \(\left(1;+\infty\right)\) khi:

\(-2m\le1\Rightarrow m\ge-\dfrac{1}{2}\Rightarrow-\dfrac{1}{2}\le m< \dfrac{1}{2}\)

Kết hợp lại ta được: \(m\ge-\dfrac{1}{2}\)

9 tháng 10 2018

Đáp án D.

Cách 1: Tư duy tự luận

Điều kiện:   x 2 > 0 ⇔ x ≠ 0.

Bất phương trình

( 2 x 2 − 4 − 1 ) . ln ( x 2 ) < 0 ⇔ 2 x 2 − 4 − 1 < 0 ln ( x 2 ) > 0 2 x 2 − 4 − 1 > 0 ln ( x 2 ) < 0 ⇔ x 2 − 4 < 0 x 2 > 1 x 2 − 4 > 0 x 2 < 1 ( L )  

⇔ ( x − 2 ) ( x + 2 ) < 0 ( x − 1 ) ( x + 1 ) > 0 ⇔ − 2 < x < 2 x > 1 x < − 1 ⇔ 1 < x < 2 − 2 < x < − 1

 

Vậy tập nghiệm của bất phương trình là S = ( − 2 ; − 1 ) ∪ ( 1 ; 2 )  .

Cách 2: Sử dụng máy tính cầm tay

Nhập vào màn hình biểu thức 2 x 2 − 4 − 1 . ln ( X 2 )  và CALC với X = − 2 ; − 1 ; 1 ; 2.

 

Ta xét dấu của biểu thức 2 X 2 − 4 − 1 . ln ( X 2 )  trên mỗi khoảng ( − ∞ ; − 2 ) , ( − 2 ; − 1 ) , ( − 1 ; 1 ) , ( 1,2 ) , ( 2 ; + ∞ )  .

 

Tiếp tục dùng CACL:

Vậy 

( 2 x 2 − 4 − 1 ) . ln ( x 2 ) < 0 ⇔ x ∈ ( − 2 ; − 1 ) ∪ ( 1 ; 2 ) .

 

16 tháng 8 2017