tìm số abc biết abc=(a+b)2.c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc<1000
=>a<7
=>abc<700
=> 1<=a,b,c<=5
Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5
Thật vậy: Giả sử cả 3 số a,b,c<=4
=>abc<=72<100 vô lí
Do đó a=5 hoặc b=5 hoặc c=5
*Nếu a=5
Ta có
500+bc=5!+b!+c!<=240+b!
=>b!+240>500
=>b!>260
=>b>5 vô lí
Nên a<=4
*Nếu b=5
Lập luận tương tự b<=4
*Nếu c=5
Tìm được a=1;b=4
Vậy…
abc=100a+ 10b +c =a! +b! +c!.
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7)
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải)
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)]
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ]
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c )
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b )
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c)
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4
vậy abc= 145.
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5.
+abc có 3 chữ số nên a,b,c < 7 (7! > 1000)
+a,b,c phải có ít nhất 1 số lớn hơn 4 ( vì 4! + 4! + 4! < 100)
=> 1 trong 3 số a, b, c = 5 hoặc 6.
+Nếu số đó bằng 6; 6! = 720 => a > 7 => loại.
=>Do đó chắc chắn có 1 số bằng 5.
(Do 5! + 5! + 5! < 500 nên a không phải là 5; 5 là b hoặc c.)
Giờ còn ít trường hợp hơn ban đầu nên ta có thể dùng cách thay số để tìm ra kết quả.
Tìm x;y 5! + x! + y! = số có 5;x;y (x;y) = (5;5); (5;4); (5;3); (5;2); (5;1) ; (4;4); (4;3); (4;2) (4;1) (3;3) (3;2) (3;1) (2;2) (2;1)
Ta tìm được 1! + 4! + 5! = 145
Vậy a = 1; b = 4; c = 5
a,
abc chia hết cho 45 nên abc chia hết cho 5 và 9 nên c=0 hoặc 5 mà c khác 0 nên c=5
ta có:
ab5-5ba=396
ta viết lại biểu thức như sau:
396+5ba =ab5
6+a tận cùng là 5 nên a=9
nên ta lại có
abc=9b5 chia hết cho 9 và 5
nên 9+b+5 chia hết cho 9
nên b=4
suy ra abc=945
Đ/S:945
b,
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
a,
abc chia hết cho 45 nên abc chia hết cho 5 và 9 nên c=0 hoặc 5 mà c khác 0 nên c=5
ta có:
ab5-5ba=396
ta viết lại biểu thức như sau:
396+5ba =ab5
6+a tận cùng là 5 nên a=9
nên ta lại có
abc=9b5 chia hết cho 9 và 5
nên 9+b+5 chia hết cho 9
nên b=4
suy ra abc=945
Đ/S:945
Trong đề abc có gạch ngang trên đầu ms lm đc,trong bài làm trình bày abc có gạch trên đầu nha
Điều kiện: a≠0; a,b,c ϵ N
Ta thấy: 1=1000
Mà abc có 3 chữ số
=> (a+b+c) <10
Nếu ≤4 ⇒ (a+b+c)3≤43=64=abc (vô lí)
=> (a+b+c)>4
Nếu a+b+c=5
=>=125
=> abc=125 (Tổng ≠5)
Nếu (a+b+c =6) => abc= =216 (Tổng ≠6)
Nếu (a+b+c=7)=> abc==343(Tổng ≠7)
Nếu (a+b+c=8)=> abc= =512 (tổng =8) → Chọn
Nếu (a+b+c=9)=> abc==729(Tổng ≠9)
Vậy: abc=512
*like hộ phát
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{6}=\dfrac{b+c-a}{4+6-2}=\dfrac{8}{8}=1\)
=>\(a=2\cdot1=2;b=1\cdot4=4;c=6\cdot1=6\)
Vậy: Số cần tìm là 246
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{6}=\dfrac{b+c-a}{4+6-2}=\dfrac{8}{8}=1\)
\(\Rightarrow a=2\cdot1=2\)
\(\Rightarrow b=4\cdot1=4\)
\(\Rightarrow c=6\cdot1=6\)
Vậy \(\left(a;b;c\right)=\left(2;4;6\right)\)
thế ra làm sao dc phai 1000/(a+b+c)=abc moi ra dc la 125
con the nay thi chiu
Thêm ĐK:\(a,b,c\in Z\)
+) Xét \(c=0\)
\(\Leftrightarrow ab.0=2\left(a+b\right).0\) (luôn đúng)
\(\Leftrightarrow a,b\) bất kì
+) Xét \(c\ne0\)
\(\Leftrightarrow ab=2\left(a+b\right)\)
\(\Leftrightarrow2a-ab+2b=0\)
\(\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)+4=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=4\)
Lập bảng giải ra \(\left(a;b\right)=\left(3;1\right),\left(4;4\right),\left(1;-2\right),\left(0;0\right)\) và các hoán vị