Cho số phức z thỏa mãn z - 2 - 3 i = 0 . Tìm giá trị lớn nhất của z + 1 + i
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Đặt w = ( 1 + i)z , suy ra
Gọi M( x; y) là điểm biểu diễn của số phức w trên mặt phẳng Oxy.
Khi đó tập hợp điểm biểu diễn của số phức w là đường tròn tâm I(-1; 7) , bán kính
Ta có
Vậy
Tập hợp các điểm z thỏa mãn điều kiện z - 1 = 2 là đường tròn (C) tâm I(1;0) bán kính R = 2
Gọi M là điểm biểu diễn cho số phức z, A(0,-1) là điểm biểu diễn cho số phức -i, B(2;1)là điểm biểu diễn cho số phức 2+i
Đáp án D
Đáp án D
Phương pháp: Đưa biểu thức T về dạng biểu thức vector bằng cách tìm các vecto biểu diễn cho các số phức.
Cách giải:
Tập hợp các điểm z thỏa mãn điều kiện là đường tròn (C) tâm I(1;0) bán kính R= 2
Gọi M là điểm biểu diễn cho số phức z, A(0;-1) là điểm biểu diễn cho số phức -i, B(2;1) là điểm biểu diễn cho số phức 2+i
Dễ thấy A,B ∈ C và
AB là đường kính của đường tròn (C)
vuông tại M
Đặt
Xét hàm số trên ta có:
Vậy maxT=4
Chọn B.
Gọi M (x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Gọi điểm A(2; -2) ; B(-1; 3) và C(-1; -1)
Phương trình đường thẳng AB: 5x + 3y - 4 = 0.
Khi đó theo đề bài
Ta có . Do đó quỹ tích M là đoạn thẳng AB.
Tính CB = 4 và .
Hình chiếu H của C trên đường thẳng AB nằm trên đoạn AB.
Vậy
Chọn C.