K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2019

5 tháng 8 2018

Đáp án B

V A . B C D = 1 3 A D . S A B C = 1 6 A B . A C . A D = a b c 6

29 tháng 4 2018

Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) . Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều...
Đọc tiếp

Bài 1 . Cho tứ diện ABCD , biết AB vuông góc với mặt phẳng ( BCD ) , tam giác BCD vuông tại D , AB = BC = a , góc CBD bằng 30° . a ) CMR : các mặt tứ diện đều là các tam giác vuông . b ) CMR : mp ( BCD ) vuông góc với mp ( ABD ) , mp ( ACD ) vuông góc với mp ( ABD ) . | c ) Tính khoảng cách từ 2 đến mặt phẳng ( ABC ) .

Bài 2 . Cho hình chóp S . ABCD đáy ABCD là hình vuông cạnh a , SA T ( ABCD ) và SA = a . a ) CMR các mặt bên của hình chóp đều là các tam giác vuông . | b ) Gọi M , P lần lượt là hình chiếu của A lên SB , SD . Tìm giao điểm N của SC với mặt phẳng ( APM ) . CMR : SC vuông góc với mặt phẳng ( APM ) , AN vuông góc với MP . c ) Tính diện tích thiết diện tạo bởi mặt phẳng ( APM ) với hình chóp .

Bài 3 . Cho hình chóp S . ABCD đáy ABCD là hình thang vuông tại A và D , AD = DC = a , AB = 2a , mp ( SAB ) vuông góc với ( ABC ) , tam giác SAB đều . a ) Xác định và tính chiều cao của hình chóp . b ) Xác định và tính góc giữa các cạnh bên và mặt đáy của hình chóp . c ) Gọi I là trung điểm của AB . Xác định và tính khoảng cách giữa SA và IC , SD và IC . d ) Xác định và tính diện tích thiết diện tạo bởi mặt phẳng ( P ) đi qua | trung điểm J của BC song song với AB và vuông góc với mp ( ABC ) cắt hình chóp . Bài 4 . Cho hình chóp S . ABC ; SA , SB , SC đối mặt vuông góc , SA = 2 , AC = av3 , BC = 2a . a ) Tính khoảng cách từ S đến mặt phẳng ( ABC ) . b ) Gọi H là hình chiếu vuông góc của S lên mặt phẳng ( ABC ) . CMR : H là trực tâm của tam giác ABC . c ) Xác định và tính góc giữa mặt phẳng ( SBC ) và ( ABC ) . d ) Tính khoảng cách giữa các đường thẳng AC và SB , SC và AB .

Bài 5 . Cho hình vuông ABCD . Gọi S là điểm trong không gian sao cho SAB là tam giác đều và mp ( SAB ) vuông góc với mp ( ABCD ) . a ) CMR : mp ( SAB ) 1 mp ( SAD ) ; mp ( SAB ) 1 mp ( SBC ) . b ) Tính góc giữa hai mặt phẳng ( SAD ) và ( SBC ) . c ) Gọi H và I lần lượt là trung điểm của AB và BC . CMR : mp ( SHC ) 1 mp ( SDI ) .

Bài 6 . Cho tứ diện SABC , hai mặt phẳng ( SAB ) và ( SBC ) vuông góc với nhau và SA 1 mp ( ABC ) , SB = a2 , góc BSC bằng 45° . a ) CMR : BC 1 SB . b ) Tìm điểm cách đều bốn điểm S , A , B , C . a

0
AH
Akai Haruma
Giáo viên
4 tháng 3 2017

Lời giải:

Vì mặt phẳng đi qua $A$ nên có dạng
\((P):a(x-1)+b(y-2)+c(z-3)=0\)

Ta có \(\overrightarrow{AB}=(-3,-1,2)\). Vì PT mặt phẳng đi qua $A,B$ nên

\(\overrightarrow{n_P}=(a,b,c)\perp \overrightarrow{AB}\Rightarrow -3a-b+2c=0\) \((1)\)

\(d(C,(P))=2d(D,(P))\Leftrightarrow \frac{|a-3b-2c|}{\sqrt{a^2+b^2+c^2}}=\frac{2|-a+b-2c|}{\sqrt{a^2+b^2+c^2}}\)

\(\Leftrightarrow (a-3b-2c)^2=4(-a+b-2c)^2\) \((2)\)

Từ \((1)\) thay \(2c=3a+b\) vào \((2)\) và khai triển thu được: \(\left[{}\begin{matrix}b=\dfrac{3a}{2}\\b=\dfrac{-5a}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=\dfrac{9a}{4}\\c=\dfrac{a}{4}\end{matrix}\right.\)

Do đó PTMP \(\left[{}\begin{matrix}a\left(x-1\right)+\dfrac{3}{2}a\left(y-2\right)+\dfrac{9}{4}a\left(z-3\right)=0\\a\left(x-1\right)-\dfrac{5}{2}a\left(y-2\right)+\dfrac{1}{4}a\left(z-3\right)=0\end{matrix}\right.\)

\(\leftrightarrow\left[{}\begin{matrix}4x+6y+9z-43=0\\4x-10y+z+13=0\end{matrix}\right.\)

a: CD vuông góc AD; CD vuông góc SA

=>CD vuông góc (SAD)

b: BD vuông góc AC; BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

a)

Bổ đề: Tam giác $ABC$ có \(\angle A=\alpha\) thì \(S_{ABC}=\frac{AB.AC\sin \alpha}{2}\)

Chứng minh: Từ $B$ kẻ đường cao $BH$ của tam giác

Khi đó:\(S_{ABC}=\frac{BH.AC}{2}\) (1)

\(\frac{BH}{AB}=\sin \alpha\) (TH góc A tù thì ta có: \(\frac{BH}{AB}=\sin (180^0-\alpha)=\sin \alpha\) ) \(\Rightarrow BH=AB.\sin \alpha\) (2)

Từ (1).(2) suy ra \(S_{ABC}=\frac{AB.AC.\sin \alpha}{2}\)

--------------------------------------------

Quay lại bài toán:

a)

\(S_{ABCD}=S_{ABC}+S_{ADC}=\frac{ab.\sin \angle ABC}{2}+\frac{cd.\sin \angle ADC}{2}\)

\(\sin ABC, \sin ADC\leq 1\Rightarrow S_{ABCD}\leq \frac{ab}{2}+\frac{cd}{2}=\frac{ab+cd}{2}\)

Ta có đpcm.

b)

* Vế đầu tiên:

\(2S=S_{ABC}+S_{ADC}+S_{BAD}+S_{BCD}\)

\(=\frac{ac\sin \angle ABC}{2}+\frac{cd\sin \angle ADC}{2}+\frac{ad.\sin \angle BAD}{2}+\frac{bc\sin \angle BCD}{2}\)

\(\leq \frac{ac}{2}+\frac{cd}{2}+\frac{ad}{2}+\frac{bc}{2}=\frac{ac+cd+ad+bc}{2}\)

\(\Leftrightarrow 4S\leq ac+cd+ad+bc=(a+c)(b+d)\) (đpcm)

* Vế sau:

\(p^2=\left(\frac{a+b+c+d}{2}\right)^2=\frac{[(a+c)+(b+d)]^2}{4}\)

Áp dụng bđt AM-GM: \((a+c)+(b+d)\geq 2\sqrt{(a+c)(b+d)}\)

\(\Rightarrow 4p^2=[(a+c)+(b+d)]^2\geq 4(a+c)(b+d)\)

\(\Rightarrow p^2\geq (a+c)(b+d)\) (đpcm)

c)

Theo phần b, ta đã chứng minh được:

\(S\leq \frac{(a+c)(b+d)}{4}\) (1)

Mặt khác, áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\)

\(a^2+d^2\geq 2ad\)

\(b^2+c^2\geq 2bc\)

\(c^2+d^2\geq 2cd\)

Cộng theo vế: \(\Rightarrow 2(a^2+b^2+c^2+d^2)\geq 2(ab+ad+bc+cd)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\geq ab+ad+bc+cd=(a+c)(b+d)\) (2)

Từ \((1);(2)\Rightarrow S\leq \frac{a^2+b^2+c^2+d^2}{4}\) (đpcm)

1:

a: BC vuông góc BA

BC vuông góc SA

=>BC vuông góc (SAB)

b: Kẻ BK vuông góc AC, BH vuông góc SK

=>BH=d(B;(SAC))

\(AC=\sqrt{BA^2+BC^2}=5a\)

AK=(4a)^2/5a=3,2a

BK=4a*3a/5a=2,4a

\(SB=\sqrt{2a^2+16a^2}=3a\sqrt{2}\)

SK=căn 2a^2+10,24a^2=a*3căn 34/5

BK=2,4a

SK^2+BK^2=SB^2

nên ΔSKB vuông tại K

=>K trùng với H

=>d(B;(SAC))=BK=2,4a