cho đường tròn tâm o dây AB < 2R; qua A kẻ tiếp tuyến với đường tròn và cắt đường thẳng qua O và vuông góc với AB tại C chứng minh CB là tiếp tuyến của đường tròn tại C ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề của bạn là:
Cho đường tròn tâm O đường kính AB=2R. Dây cung CD không đi qua tâm O sao cho góc COD=90 độ. CD cắt AB ở E (D nằm giữa E và C ) sao cho OE=2R . Tính EC và ED theo R.
Bài làm:
Kẻ \(OM\perp CE\)và \(BN\perp CE\). Khi đó
Do COD là tam giác vuông cân nên \(CD=R\sqrt{2}\)và \(OM=MD=\frac{R\sqrt{2}}{2}\)
Ta có EB = BO và BN // OM nên EN = MN
suy ra NB là đường trung bình của tam giác vuông EMO nên \(NB=\frac{OM}{2}=\frac{R\sqrt{2}}{4}\)
Xét tam giác vuông ENB có \(EN=\sqrt{EB^2-BN^2}=\sqrt{R^2-\frac{2R^2}{4^2}}=\frac{R\sqrt{14}}{4}\)
mà MN = EN suy ra
\(DN=MN-MD=\frac{R\sqrt{14}}{4}-\frac{R\sqrt{2}}{2}=\frac{R\sqrt{14}-2R\sqrt{2}}{4}\)
Vậy \(ED=EN+ND=\frac{R\sqrt{14}}{4}+\frac{R\sqrt{14}-2R\sqrt{2}}{4}=\frac{R\sqrt{14}-R\sqrt{2}}{2}\)
\(EC=ED+DC=\frac{R\sqrt{14}-R\sqrt{2}}{2}+R\sqrt{2}=\frac{R\sqrt{14}+R\sqrt{2}}{2}\)
Theo đầu bài thì CD cắt AB ở E (D nằm giữa E và C) nhưng D không thể nằm giữa E và C. DE = 2R = AB nhưng DE chỉ bằng R nên DE không thể bằng AB nên bài toán này không có cách giải.
Lời giải:
Gọi $T$ là giao $OC$ và $AB$
Vì $OA=OB$ nên $OAB$ là tam giác cân tại $O$
$\Rightarrow$ đường cao $OT$ đồng thời là đường trung tuyến
$\Rightarrow T$ là trung điểm $AB$
Như vậy, $OC\perp AB$ tại trung điểm $T$ của $AB$ nên $OC$ là đường trung trực của $AB$
$\Rightarrow CA=CB$.
$\triangle CBO=\triangle CAO$ (c.c.c)
$\Rightarrow \widehat{CBO}=\widehat{CAO}=90^0$
$\Rightarrow CB\perp OB$ nên $CB$ là tiếp tuyến của $(O)$ tại $C$.
Hình vẽ: