Rút gọn biểu thức P = a . a − 2 . a 3 4 với a > 0
A. P = a − 7 4
B. P = a − 3 4
C. P = a − 1 2
D. P = a 5 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{0,49\cdot a^2}=\sqrt{0,7^2\cdot a^2}=\sqrt{\left(0,7\cdot\left|a\right|\right)^2}=0,7\left|a\right|\) (với a < 0)
b) \(\sqrt{25\left(7-a\right)^2}=\sqrt{\left[5\left(7-a\right)\right]^2}=5\left|7-a\right|\) (với a >/ 7)
c) \(\sqrt{a^4\left(a-2\right)^2}=a^2\left(a-2\right)=a^3-2a\) (với a >0 )
Tớ mới học nên cx ko chắc chắn lắm nhé.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
\(a,P=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\\ P=\sqrt{a}+2+2+\sqrt{a}=2\sqrt{a}+4\\ b,P=a+1\Leftrightarrow a+1=2\sqrt{a}+4\\ \Leftrightarrow a-2\sqrt{a}-3=0\\ \Leftrightarrow\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)=0\\ \Leftrightarrow\sqrt{a}=3\left(\sqrt{a}\ge0\right)\\ \Leftrightarrow a=9\left(tm\right)\)
a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
b: P=A+B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)
a) Ta có:
\(A=\left(a-4\right)\left(a+5\right)-\left(a-5\right)\left(a+4\right)\)
\(=\left[\left(a-4\right)a+5\left(a-4\right)\right]-\left[\left(a-5\right)a+4\left(a-5\right)\right]\)
\(=\left[a^2-4a+5a-20\right]-\left[a^2-5a+4a-20\right]\)
\(=a^2-4a+5a-20-a^2+5a-4a+20\)
\(=\left(a^2-a^2\right)+\left(-4a+5a+5a-4a\right)+\left(-20+20\right)\)
\(=0+2a+0\)
\(=2a\)
b) Ta có:
\(B=\left(2-a\right)\left(a+7\right)-\left(a-1\right)\left(a+2\right)\)
\(=\left[\left(2-a\right)a+7\left(2-a\right)\right]-\left[\left(a-1\right)a+2\left(a-1\right)\right]\)
\(=\left[2a-a^2+14-7a\right]-\left[a^2-a+2a-2\right]\)
\(=2a-a^2+14-7a-a^2+a-2a+2\)
\(=\left(2a-7a+a-2a\right)-\left(a^2+a^2\right)+\left(14+2\right)\)
\(=-6a-2a^2+16\)
\(=3\sqrt{a}+8\cdot\dfrac{1}{2}\sqrt{a}-\sqrt{\dfrac{9a^2}{a}}+\sqrt{3}\\ =3\sqrt{a}+4\sqrt{a}-3\sqrt{a}+\sqrt{3}\\ =4\sqrt{a}+\sqrt{3}\)
a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)
\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)
=1/2y+3/4-3/2y-3/2
=-y-3/4
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
Đáp án B
Ta có:
P = a 1 2 . a − 2 . a 3 4 = a 1 2 − 2 + 3 4 = a − 3 4