Bài 6. Tìm số nguyên n biết:
a) – 13 là bội của n – 2
b) 2n - 1 là ước của 3n + 2
c) n2 + 2n - 7 chia hết cho n + 2
d) n2+3n−5 là bội của n−2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
a: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)
hay \(n\in\left\{-1;-3;0;-4;1;-5;4;-8;7;-11;16;-20\right\}\)
a, Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
a +2 | -7 | -1 | 1 | 7 |
a | -9 | -3 | -1 | 5 |
Theo bảng trên ta có:
\(a\) \(\in\) { -9; -3; -1; 5}
b, 2a + 1 \(\in\) Ư(12)
Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
lập bảng ta có:
2a+1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
a
|
-11/2 loại |
-7/2 loại |
-5/2 loại |
-2 nhận |
-3/2 loại |
-1 nhận |
0 nhận |
1/2 loại |
1 nhận |
3/2 loại |
5/2 loại |
11/2 loại |
Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:
a \(\in\) {- 2; - 1; 0; 1}
n + 5 \(⋮\) n - 2
n - 2 + 7 ⋮ n - 2
7 ⋮ n -2
Ư(7) ={ -7; -1; 1; 7}
Lập bảng ta có:
n - 2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 9 |
Theo bảng trên ta có:
n \(\in\) { -5; 1; 3; 9}
a) n+2 chia hết cho n-1
n+2=n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1 hay n-1\(\in\)Ư(3)={-1;1;-3;3}
n\(\in\){0;2;-2;4}
b) 2n-3 là bội của n+4 nghĩa là 2n-3 chia hết cho n+4
2n-3=2(n+4)-11 chia hết cho n+4
=> 11 chia hết cho n+4 hay n+4\(\in\)Ư(11)={-1;1;-11;11}
n\(\in\){-5;-3;-15;7}
c) n-7 chia hết cho 2n+3
n-7=2(n-7) chia hết cho 2n+3
2(n-7)=2n+3-17 chia hết cho 2n+3
=> 17 chia hết cho 2n+3 hay 2n+3\(\in\)Ư(17)={-1;1;-17;17}
n\(\in\){-2;-1;-10;7}
d) n+5 chia hết cho n-2
n+5=n-2+7 chia hết cho n-2
=> 7 chia hết cho n-2 hay n-2\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){1;3;-5;9}
e) n2 -2 là bội của n+3
n2-2=n(n+3)-3n-2=n(n+3)-3(n+3)+7 chia hết cho n-2
n(n+3) và 3(n+3) cùng chia hết cho n+3
=> 7 chia hết cho n+3 hay n+3\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){-4;-2;-10;4}
f) 3n-13 là ước của n-2 nghĩa là n-2 chia hết cho 3n-13
n-2 chia hết cho 3n-13 => 3(n-2) chia hết cho 3n-13
3(n-2)=3n-13+7 chia hết cho 3n-13
=> 7 chia hết cho 3n-13 hay 3n-13\(\in\)Ư(7)={-1;1-7;7}
n\(\in\){4;2;}
g) In+19I + In+5I + In+2011I = 4n
n+19+n+5+n+2011=-4n
TH1: 3n+2035=-4n => n=(-2035) :7 (loại)
TH2: n+19+n+5+n+2011=4n
3n+2035=4n => n=2035
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.