K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Đáp án D.

Trên các tia SB; SC lần lượt lấy các điểm B’; C’ sao cho SB’ = SC’ = SA = a.

7 tháng 1 2017

Đáp án D.

Trên các tia SB; SC lần lượt lấy các điểm B’; C’ sao cho SB’ = SC’ = SA = a

29 tháng 5 2017

8 tháng 11 2018

6 tháng 5 2019

24 tháng 5 2018

Đáp án D.

Gọi B', C' là trung điểm SB, SC. Thiết diện là ∆ AB'C'

Ta có 

Tương tự ta có 

Vậy 

2 tháng 9 2017

Chọn B

Lấy  M ∈ S B ,   N   ∈ S C thỏa mãn SM=SN=SA=a ⇒ S M S B = 1 2 S N S C = 1 4

Theo giả thiết: A S B ^ = B S C ^ = C S A ^ = 60 o ⇒ S . A M N  là khối tứ diện đều cạnh a.

Do đó:  V S . A M N = a 3 2 12

Mặt khác:

  V S . A M N V S . A B C = S M S B . S N S C = 1 2 . 1 4 = 1 8 ⇒ V S . A B C = 8 V S . A M N = 2 a 3 2 3  

29 tháng 1 2018

Đáp án D.

Gọi B',C' là trung điểm SB,SC  ⇒ Thiết diện là Δ A B ' C '  

Ta có  S A ' B ' C ' = 1 2 A B ' 2 . A C ' 2 - A B '   → . A C '   → 2

A B '   → = 1 2 S B   → - S A   → ⇒ A B ' 2 = 1 4 S B 2 + S A 2 - S A   → . S B   → = a 2 4 5 - 4 cos   α

 

Tương tự ta có A B ' → . A C '   → = a 2 4 4 - 3 cos α  

Vậy S A B ' C ' = 1 2 a 4 16 5 - 4 cos α 2 - a 4 16 4 - 3 cos α 2 = a 2 8 7 cos 2 α - 16 cos α + 9  

31 tháng 3 2019

Chọn D.

Gọi là hình chiếu vuông góc của A lên mp (SBC) . Gọi I, K lần lượt là hình chiếu vuông góc của H lên SB và SC.

Ta có 

Chứng minh tương tự ta được SC ⊥ SK

∆ SAI =  ∆ SAK  (cạnh huyền – góc nhọn) => SI = SK

Khi đó  ∆ SHI = SHK  (cạnh huyền – cạnh góc vuông) => HI = HK. Do đó SH là đường phan giác trong của BSC, nên HSI = 30 °

Trong tam giác vuông SAI, 

Trong tam giác vuông HIS, 

Khi đó 

Vậy 

Cách 2: Sử dụng công thức tính nhanh

Nếu khối chóp S.ABC có  thì 

Áp dụng: Với 

Cách 3:

Trên các cạnh SB, SC lần lượt lấy các điểm B’, C’ sao cho SB' = SC' = SA = a 2

Khi đó chóp S.AB'C' là khối chóp tam giác đều. Đồng thời ASB = BSC = CSA = 60 °  nên AB' = B'C' = AC' = SA = a 2

Gọi H là hình chiếu của S lên mặt phẳng (AB'C'). Khi đó dễ dàng chứng minh được các tam giác SHA, SHB', SHC' bằng nhau. Suy ra HA, HB', HC' bằng nhau. Hay H là tâm đường tròn ngoại tiếp tam giác AB'C'. Vì tam giác AB'C' đều nên H cũng là trọng tâm tam giác AB'C'.

Ta có 

Ta có

18 tháng 11 2019