K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

9 tháng 8 2021

có 5 câu 

nha mấy bạn ,giúp mik 

 

NV
30 tháng 5 2020

3.

\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)

\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)

\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)

\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)

\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)

\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)

4.

Gọi (Q) là mặt phẳng chứa d và vuông góc (P)

(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt

Phương trình (Q):

\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)

d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:

\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)

\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp

Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)

NV
30 tháng 5 2020

1/

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)

\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)

\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)

2/

Đặt \(z=x+yi\)

\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)

\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)

Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)

\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)

\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)

7 tháng 4 2023

Em xem lại đề nhé!

Sửa đề: x+2y=3

Tọa độ giao là:

x-y=1 và x+2y=3

=>x=5/3 và y=2/3

Thay x=5/3 và y=2/3 vào (d), ta được"

5/3(m+2)-m^2=2/3

=>5/3m+10/3-m^2-2/3=0

=>-m^2+5/3m+8/3=0

=>-3m^2+5m+8=0

=>-3m^2+8m-3m+8=0

=>(3m-8)(-m-1)=0

=>m=-1 hoặc m=8/3

NV
25 tháng 7 2021

Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)

Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).

Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)

Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)

Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)

\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)

Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)

25 tháng 7 2021

Bài giải chi tiết quá ạ :)) Em cảm ơn nhiều ạ :vv

17 tháng 8 2017

Ta có: y=x-1

nên x-1=y

=>x-y=1

Tọa độ giao điểm của hai đường x-y=1  và x-2y=3 là:

\(\left\{{}\begin{matrix}x-y=1\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Thay x=-1 và y=-2 vào y=(m+2)x-m2, ta được:

\(-m^2+\left(-1\right)\cdot\left(m+2\right)=-2\)

\(\Leftrightarrow-m^2-m-2=-2\)

\(\Leftrightarrow m^2+m=0\)

=>m=0 hoặc m=-1

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Xét pt hoành độ giao điểm của $(d_1)$ và $(d_2)$:

\(y=2x+1=-x-2\)

\(\Leftrightarrow 3x=-3\Leftrightarrow x=-1\)

Suy ra \(y=2(-1)+1=-1\)

Vậy giao điểm của \(d_1,d_2\) là: \(I(-1;-1)\)

Để ba đường thẳng trên đồng quy (cùng giao nhau tại 1 điểm ) thì $I$ phải thuộc đường thẳng $(d_3)$

\(\Rightarrow -1=(m-1)(-1)-4\)

\(\Leftrightarrow m=-2\)

Khi đó pt đường thẳng \(d_3: y=-3x-4\)

Hình minh họa:

Hàm số bậc nhất

17 tháng 11 2022

xác định để thầy việt lâm lm òi, cj ráng chờ nghe 

10 tháng 3 2022

Mình ko phải thầy việt lâm thì mình làm có được ko nhỉ kk :v

\(A,B\in d\Rightarrow\left\{{}\begin{matrix}A\left(t_A+2;-4t_A+1;-t_A+3\right)\\B\left(t_B+2;-4t_B+1;-t_B+3\right)\end{matrix}\right.\)

\(\overrightarrow{AM}=\left(-1-t_A;4t_A-2;-2+t_A\right);\overrightarrow{BM}=\left(-1-t_B;4t_B-2;-2+t_B\right)\)

\(\overrightarrow{AM}.\overrightarrow{BM}=0\Leftrightarrow\left(1+t_A\right)\left(1+t_B\right)+\left(4t_A-2\right)\left(4t_B-2\right)+\left(t_A-2\right)\left(t_B-2\right)=0\)

\(\left|\overrightarrow{AM}\right|=\left|\overrightarrow{BM}\right|\Leftrightarrow\left(t_A+1\right)^2+\left(4t_A-2\right)^2+\left(t_A-2\right)^2=\left(t_B+1\right)^2+\left(4t_B-2\right)^2+\left(t_B-2\right)^2\)

hệ phương trình 2 ẩn, đến đây là việc của bạn r :v