K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Đáp án D

6 tháng 4 2019

#It's the moment when you're in good mood, you accidentally click back =.=

1) Calculate

\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)

\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)

\(=\frac{2.9}{10}=\frac{9}{5}\)

7 tháng 8 2019

ta có: 10010 + 1 > 10010 - 1

⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)

vậy A < B

Bài tập phát triển tư duy Bài 1: Chứng tỏ với mọi số tự nhiên n thì tích n n 2 3     là số chẵn. Bài 2: Chứng tỏ rằng số 2011 3 10 2 9 a   là số tự nhiên. Bài 3: Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2 3 n  và n  2 là nguyên tố cùng nhau Bài 4: Tính giá trị biểu thức a) A 5 5 5 1.2 2.3 99.100    b) B 1 1 1 1 1 1 1 1 2.3 3.4 4.5 5.6 6.7 7.8 8.9 9.10       ...
Đọc tiếp

Bài tập phát triển tư duy
Bài 1: Chứng tỏ với mọi số tự nhiên n thì tích n n 2 3     là số chẵn.
Bài 2: Chứng tỏ rằng số
2011 3
10 2
9
a 

là số tự nhiên.
Bài 3: Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau 2 3 n  và n  2 là nguyên tố cùng
nhau
Bài 4: Tính giá trị biểu thức
a) A 5 5 5
1.2 2.3 99.100
  
b) B 1 1 1 1 1 1 1 1
2.3 3.4 4.5 5.6 6.7 7.8 8.9 9.10
       
c) 2 2 2 2 2 2
3.5 5.7 7.9 9.11 11.13 13.15
C      
Bài 5: Tìm các số tự nhiên n để 2 3 n  và 4 1 n  là 2 số nguyên tố cùng nhau.
Bài 8: Cho S        2 2 2 . 2 2 2 3 2011 2012 . Chứng minh rằng S chia hết cho 6.
Bài 7: Tính giá trị biểu thức
a) 1 1 1 1 ...
1.2 2.3 3.4 2009.2010
D      b) 4 4 4 4 ...
2.4 4.6 6.8 2008.2010
E     
c) 1 1 1 1 ...
18 54 108 990
F     
Tài liệu ôn tập Hè năm 2019 – Toán Họa sưu tầm tổng hợp!
Toán Họa 12 [Document title] ÔN HÈ 6 LÊN 7 MÔN TOÁN
12
Bài 8: Tìm n N  để :
a) n n  6 b) 38 3  n n  c) n n   5 1  d) 28 1 n 
Bài 9: Không quy đồng mẫu số hãy so sánh 2010 2011 9 19 ;
10 10
A     và
2011 2010
9 19
10 10
B    
Bài 10: Tìm x   biết:
a) x x    3 0  b) ( )( ) x x – 2 5 –  0 c) x x    1 1 0  2 
d) | | 2 – 5 1 x  3 e) 7 3 66 x   f) | 5 – 2 0 x |
Bài 11: Tìm x   biết: a) ( ). x y – 3 2 1     7 b) 2 1 3 – 2 x y    ( ) 55.
Bài 12: Cho S     1 – 3 3 – 3 ... 3 – 3 . 2 3 98 99
a) Chứng minh rằng S là bội của –20
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
Bài 13: Tìm a, b biết a  b  7 và BCNN a b  , 140.  
Bài 14: Tính: a) A 1.2 2.3 3.4 99.100     
b) B 1 2 3 99 100       2 2 2 2 2
c) C 1.2.3 2.3.4 3.4.5 4.5.6 5.6.7 6.7.8 7.8.9 8.9.         10
Bài tập bổ sung dạng cơ bản tổng hợp:
Bài 1: Tính a) 2 .3 1 8 : 3 2 10 2     b) 1 2 3 .... 2012 2013     
c) 6 : 43 2.5 2 2  d) 2008.213 87.2008 
e) 12 : 390 : 500 125 35.7            f) 3 .118 3 .18 3 3 
g) 2007.75 25.2007  h) 15.2 4.3 5.7 3  
i) 150 10 14 11 .2007            2 0  2 j) 4.5 3.2 2 3 
k) 28.76 13.28 11.28   l) 4 : 4 1 17 : 3 8 5 30 2    
Bài 2. Tìm x biết:
a) 4 3 4 2 18  x     b) 105 : 2 3 1    x 5 0
c) 2 138 2 .3 x   2 2 d) 6 39 .28 5628 x   
e)9 2 .3 60 x    f) 26 3 : 5 71 75    x

0
12 tháng 9 2018

Chọn D.

Chọn C

27 tháng 3 2023

Chọn D

 

25 tháng 1 2019

bài 1b)

[x]-7=[-21]:3

=[x]-7=21:3

=[x]-7=7

=[x]=7-7

=[x]=0

=> Vậy x=0

22 tháng 2 2020

1 a ) -3(x+1)=0

x+1=0:(-3)

x+1 =0

x= 0-1

x=-1

25 tháng 12 2019

a) a - ( - a ) + a - ( 15 - 100 ) = a + a + a - 15 + 100 = 3a + 85

b) - 99 - ( - a + 1 ) + 2 . a = -99 + a - 1 + 2a = 3a - 100

c) -|10+1|+(-a+100) = - 11 - a + 100 = 89 - a

1 tháng 2 2017

Ta có: \(\frac{6a+1}{3a-1}=2+\frac{3}{3a-1}\)
Để (6a+1) (3a -1) thì: 3a-1 thuộc Ư(3) ={1; -1; 3; -3}
-Với 3a-1=1 => a=\(\frac{2}{3}\) (Loại)
- Với 3a- 1= -1 => a= 0 (Chọn)
- Với 3a -1 = 3 => a= \(\frac{4}{3}\)(Loại)
- Với 3a- 1= -3=> a= \(\frac{-2}{3}\)( Loại)
Vậy số nguyên a cần tìm là 0

1 tháng 2 2017

2) Ta có :A+B= a+ b -5 + (-b)-c+1= a - c - 4 (1)
Ta có: C-D= b- c- 4 - ( b- a) = b - c- 4- b + a= a- c -4 (2)
Từ (1) và (2) => A+B= C-D

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\) \(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\) 1/ So sánh A và B, A2 và A.B 2/ Chứng minh A<\(\frac{1}{10}\) Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\) \(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\) 1/ So sánh A2 và A.B 2/ Chứng minh A<\(\frac{1}{64}\) Bài 21, Cho...
Đọc tiếp

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

1/ So sánh A và B, A2 và A.B

2/ Chứng minh A<\(\frac{1}{10}\)

Bài 21, Cho \(A=\frac{1\cdot3\cdot5\cdot...\cdot4095}{2\cdot4\cdot6\cdot...\cdot4096}\)

\(B=\frac{2\cdot4\cdot6\cdot...\cdot4096}{1\cdot3\cdot5\cdot...\cdot4097}\)

1/ So sánh A2 và A.B

2/ Chứng minh A<\(\frac{1}{64}\)

Bài 21, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{2499}{2500}\)

Chứng minh A<\(\frac{1}{49}\)

Bài 22, Cho \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)

\(B=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\)

\(C=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{98}{99}\)

1/ So sánh A, B, C

2/Chứng minh \(A\cdot C< A^2< \frac{1}{10}\)

3/Chứng minh \(\frac{1}{15}< A< \frac{1}{10}\)

0