Cho x > 0, y > 0 và K = x 1 2 − y 1 2 2 1 − 2 y x + y x − 1 . Xác định mệnh đề đúng.
A. K = 2 x
B. K = x + 1
C. K = x − 1
D. K = x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)
\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)
\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)
Ta có :
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\) (2)
Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )
\(\Leftrightarrow x^2-2xy+y^2>=0\)
\(\Leftrightarrow x^2+y^2>=2xy\)
\(\Leftrightarrow x^2+y^2+2xy>=4xy\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow1>=4xy\)
\(\Leftrightarrow2xy< =\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2xy}>=2\) (3)
Từ (1) , (2) và (3) , suy ra : \(K>=4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)
\(\Rightarrow x=y=\frac{1}{2}\)
Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)
\(\dfrac{8}{9}\) : ( 2 - 3 \(\times\) y) = \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{9}\) : \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{15}\)
3 \(\times\) y = 2 - \(\dfrac{8}{15}\)
3 \(\times\) y = \(\dfrac{22}{15}\)
y = \(\dfrac{22}{15}\) : 3
y = \(\dfrac{22}{45}\)
Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Đáp án D
Ta có: K = x 1 2 − y 1 2 2 1 − y x − 2 = x − y 2 x − y − 2 x − 2 = x