giải phương trình
√2x-1 =√5 (căn kéo dài hết 2x -1 )
em cảm ơn trước ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạ 2 đề là 1 ạ tại em muốn ghi lại cho mọi người hiểu ạ
\(\left\{{}\begin{matrix}4x+5y=9\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=9\\10x-5y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}14x=14\\4x+5y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\4.1+5y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\left|2x-x^2-1\right|=2x-x^2-1\)
\(2x-x^2-1=2x-x^2-1\)
\(2x-x^2-1-2x+x^2+1=0\)
\(x=0\)
hoặc
\(-\left|2x-x^2-1\right|=2x-x^2-1\)
\(-2x-x^2-1=2x-x^2-1\)
\(-2x-x^2-1-2x+x^2+1=0\)
\(-4x=0\)
\(x=0\)
Trả lời:
| 2x -x^2 -1| = 2x -x^2 -1
<=> 2x - x^2 -1 =2x -x^2 -1
<=> 2x -x^2 -1 -2x +x^2 +1 =0
<=> 0 = 0
Vậy, phương trình đúng với mọi x
#Học tốt:))
a.
Gọi A là giao điểm của d với Ox \(\Rightarrow-2x_A+6=0\Rightarrow x_A=3\)
\(\Rightarrow OA=\left|x_A\right|=3\)
Gọi B là giao điểm của d với Oy \(\Rightarrow y_B=-2.0+6=6\)
\(\Rightarrow OB=\left|y_B\right|=6\)
Kẻ OH vuông góc AB \(\Rightarrow OH=d\left(O;d\right)\)
Áp dụng hệ thức lượng trong tam giác vuông OAB:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{9}+\dfrac{1}{36}=\dfrac{5}{36}\)
\(\Rightarrow OH=\dfrac{6\sqrt{5}}{5}\)
b.
Với \(m=0\Rightarrow y=-1\Rightarrow\) k/c từ O tới d là 1 (ktm)
Với \(m=1\Rightarrow y=-x\) đi qua O nên k/c từ O tới d bằng 0 (ktm)
Với \(m\ne\left\{0;1\right\}\):
Gọi A là giao điểm của d với Ox \(\Rightarrow-mx_A+m-1=0\Rightarrow x_A=\dfrac{m-1}{m}\)
\(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{m-1}{m}\right|\)
Gọi B là giao điểm của d với Oy \(\Rightarrow y_B=-m.0+m-1=m-1\)
\(\Rightarrow OB=\left|y_B\right|=\left|m-1\right|\)
Trong tam giác vuông OAB, kẻ OH vuông góc AB \(\Rightarrow OH=d\left(O;d\right)\)
\(\Rightarrow OH=\sqrt{3}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\Leftrightarrow\dfrac{1}{3}=\dfrac{m^2}{\left(m-1\right)^2}+\dfrac{1}{\left(m-1\right)^2}\)
\(\Rightarrow3\left(m^2+1\right)=\left(m^2-1\right)\)
\(\Leftrightarrow m^2+m+1=0\) (vô nghiệm)
Vậy ko tồn tại m thỏa mãn yêu cầu
\(\frac{3x+2}{x-1}+\frac{2x-4}{x+2}=5\)
<=> \(\frac{3x+2}{x-1}+\frac{2\left(x-2\right)}{x+2}=5\)
<=> (3x + 2)(x + 2) + 2(x - 2)(x - 1) = 5(x - 1)(x + 2)
<=> 3x2 + 6x + 2x + 4 + 2x2 - 2x - 4x + 4 = 5x2 + 10x - 5x - 10
<=> 5x2 + 2x + 8 = 5x2 + 5x - 10
<=> 5x2 + 2x + 8 - 5x2 = 5x - 10
<=> 2x + 8 = 5x - 10
<=> 2x + 8 - 5x = -10
<=> -3x + 8 = -10
<=> -3x = -10 - 8
<=> -3x = -18
<=> x = 6
a: =>|2x-3|=4x+9
TH1: x>=3/2
=>4x+9=2x-3
=>2x=-12
=>x=-6(loại)
TH2: x<3/2
PT sẽ là 4x+9=3-2x
=>6x=-6
=>x=-1(nhận)
b: =>x^2+2x+1-|3x-5|-x-x^2-2x-4=0
=>-x-3-|3x-5|=0
=>x+3+|3x-5|=0
=>|3x-5|=-x-3
TH1: x>=5/3
Pt sẽ là 3x-5=-x-3
=>4x=2
=>x=1/2(loại)
TH2: x<5/3
Pt sẽ là 3x-5=x+3
=>2x=8
=>x=4(loại)
\(\Leftrightarrow2x-1=5\Leftrightarrow x=3\)