K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

3 tháng 4 2018

Ta có

Đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt bên phương trình , với là các nghiệm.

Suy ra

Nếu với thì ,

.

Nếu thì , .

Suy ra

.

Vậy phương trình vô nghiệm hay phương trình vô nghiệm.

Do đó, số giao điểm của đồ thị hàm số và trục hoành là 0

Đáp án A

7 tháng 1 2017

Đáp án B

Giả thiết  

Đặt

 

thì

 

 

Khi đó, phương trình

 (vô nghiệm)

Vậy đồ thị hàm số y = g(x) không cắt trục hoành.

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

10 tháng 8 2017

Chọn đáp án B

Ta có f ' x = 4 a x 3 + 3 b x 2 + 2 c x + d

và f ' ' x = 2 6 a x 2 + 3 b x + c  

Suy ra g x = f ' x 2 - f ' ' x . f x  

Đồ thị hàm số y = f x = a x 4 + b x 3 + c x 2 + d x + e  cắt trục hoành tại 4 điểm phân biệt có hoành độ x 1 , x 2 , x 3 , x 4  phương trình f x = 0 có 4 nghiệm  x 1 , x 2 , x 3 , x 4

Suy ra f x = a x - x 1 x - x 2 x - x 3 x - x 4

*Khi x = x i i = 1 , 2 , 3 , 4 thì

nên  g x > 0

*Khi x ≠ x i ∀ i = 1 , 2 , 3 . 4 thì

và f 2 x > 0  

Từ (*) suy ra

17 tháng 3 2018

+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số  đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0)  nên  a= 1/3 ; b= -1 ; c= 0.

Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x= 2 nghĩa là:

 f( 2) = 0 hay  8/3-4+ d= 0  nên d= 4/3

Chọn D.

6 tháng 12 2017

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.