Biết rằng đồ thị hàm số y = f(x) = a x 4 + b x 3 + c x 2 + d x + e , cắt trục Ox tại 4 điểm phân biệt. Khi đó đồ thị hàm số cắt trục Ox tại bao nhiêu điểm?
A. 0
B. 4
C. 2
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt bên phương trình , với là các nghiệm.
Suy ra
Nếu với thì ,
.
Nếu thì , .
Suy ra
.
Vậy phương trình vô nghiệm hay phương trình vô nghiệm.
Do đó, số giao điểm của đồ thị hàm số và trục hoành là 0
Đáp án A
Đáp án B
Giả thiết
Đặt
thì
Và
Khi đó, phương trình
(vô nghiệm)
Vậy đồ thị hàm số y = g(x) không cắt trục hoành.
Đáp án D
Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox
Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0
Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có
Chọn đáp án B
Ta có f ' x = 4 a x 3 + 3 b x 2 + 2 c x + d
và f ' ' x = 2 6 a x 2 + 3 b x + c
Suy ra g x = f ' x 2 - f ' ' x . f x
Đồ thị hàm số y = f x = a x 4 + b x 3 + c x 2 + d x + e cắt trục hoành tại 4 điểm phân biệt có hoành độ x 1 , x 2 , x 3 , x 4 phương trình f x = 0 có 4 nghiệm x 1 , x 2 , x 3 , x 4
Suy ra f x = a x - x 1 x - x 2 x - x 3 x - x 4
*Khi x = x i i = 1 , 2 , 3 , 4 thì
nên g x > 0
*Khi x ≠ x i ∀ i = 1 , 2 , 3 . 4 thì
và f 2 x > 0
Từ (*) suy ra
+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .
+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0) nên a= 1/3 ; b= -1 ; c= 0.
Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d .
Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm x= 2 nghĩa là:
f( 2) = 0 hay 8/3-4+ d= 0 nên d= 4/3
Chọn D.
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.