Cho hàm số y = f x có đạo hàm trên ℝ và có đồ thị là đường cong như hình vẽ. Đặt g x = 3 f f x + 4 . Tìm số điểm cực trị của hàm số g x ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có
.
.
Hình bên dưới là đồ thị của hàm số và .
Dựa vào hình vẽ ta thấy đồ thị hàm số và cắt nhau tại 2 điểm phân biệt, đồng thời khi hoặc , khi .
Do đó đổi dấu qua , .
Vậy hàm số g(x) có hai điểm cực trị.
Chọn A
Ta có: g(x) = f(x-2017) - 2018x + 2019.
Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).
Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.
Chọn A.
Giải phương trình g ' x = 0
Từ đồ thị hàm số y = f ' x
ta có f ' x = - 1
Ta có BBT của hàm g (x)
Từ BBT ta thấy hàm số g (x) đạt cực tiểu tại x = 1.
Ta có
Suy ra
• Từ giả thiết hàm số không có cực trị, kết hợp với đồ thị suy ra hàm số luôn nghịch biến nên f'(x) < 0 với mọi x. Suy ra f'(x) - 2 < 0 với mọi x
• Phương trình f(x) = 2x có nghiệm suy nhất x = 1 (VT nghịch biến – VP đồng biến).
Bảng biến thiên
Do đó đồ thị hàm số y = h(x) có điểm cực tiểu M(1;0)
Chọn A.