Cho hai hình vuông ABCD (AB=a) và AODE. Tính thể tích V của khối tròn xoay sinh ra bởi ngũ giác ABCDE quay quanh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Khi quay quanh AB, hình vuông ABCD sinh ra mặt trụ có thể tích V 1 = πa 3
Hình thang AMCB sinh ra hình nón cụt có thể tích
Đáp án A
Khi quay quanh AB, hình vuông ABCD sinh ra mặt trụ có thể tích V 1 = πa 3
Hình thang AMCB sinh ra hình nón cụt có thể tích
Chọn C.
Phương pháp
Sử dụng các công thức tính thể tích sau:
+) Thể tích khối nón bán kính đáy r, đường cao h là
Gọi A’, B’ lần lượt các điểm đối xứng A, B qua CD. H là trung điểm của BB’, ta dễ dàng chứng minh được C là trung điểm của AA’.
Gọi V1 là thể tích khối nón có chiều cao CD, bán kính đáy AC.
V2 là thể tích khối nón cụt có chiều cao CH, bán kính đáy nhỏ BH, bán kính đáy lớn AC.
V3 là thể tích khối nón có chiều cao CH, bán kính đáy BH.
Chọn A