Xét tám mặt cầu có bán kính bằng 1 và các mặt cầu này đều tiếp xúc với cả ba mặt phẳng tọa độ. Tìm bán kính mặt cầu (S) mà cả tám mặt cầu kể trên đều tiếp xúc trong với (S)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp giải:
Xét vị trí tương đối của mặt phẳng, gọi phương trình tổng quát của mặt phẳng và tính toán dựa vào điều kiện tiếp xúc
Lời giải:
Gọi phương trình mặt phẳng cần tìm là (P): ax+by+cz+d=0
suy ra mp(P)//BC hoặc đi qua trung điểm của BC.
Mà B C → = ( - 4 ; 0 ; 0 ) và mp vuông góc với mp (Oyz) => (P) //BC
Với (P) //BC => a = 0 => by+cz+d=0
suy ra có ba mặt phẳng thỏa mãn
Đáp án B
A B = A C = 13 , B C = 4 , d ( A , B C ) = 3 . Do R 1 = 2 R 2 = 2 R 3 nên các khoảng cách từ A đến (P) gấp đôi khoảng cách từ B,C đến (P). gọi M, N lần lượt là điểm đối xứng của A qua B,C. và P,Q là điểm trên canh AB,AC sao cho A P = 2 B P , A Q = 2 Q C . Bài toán quy về tìm các mp (P) chính là các mặt phẳng đi qua MN,MQ,NP,PQ sao cho d ( A , ( P ) ) = 2
TH1: d ( A , P Q ) = 2 nên chỉ có duy nhất 1 mp (P) qua PQ sao cho d ( A , ( P ) ) = 2
TH2: d ( A ; M N ) , d ( A , M Q ) , d ( A ; N P ) đều lớn hơn 2 nên mỗi TH sẽ có 2 mp qua các cạnh MN,MQ,NP sao cho khoảng cách từ A đến nó bằng 2
Vậy có tất cả 7 mp thỏa mãn yêu cầu
Đáp án D.
Mặt cầu tiếp xúc với cả ba mặt cầu trên là mặt cầu tiếp xúc ngoài với cả 3 mặt cầu trên. Gọi I là tâm và R là bán kính mặt cầu cần tìm
Ta có:
Đáp án B.
Gọi phương trình mặt phẳng cần tìm là
P : + b y + c z + d = 0.
Vì d B ; P = d C ; P = 1 suy ra
m p P / / B C hoặc đi qua trung điểm của BC.
Trường hợp 1: với
s u y r a d A ; P = 2 b + c + d b 2 + c 2 = 2
V à d B ; P = − b + c + d b 2 + c 2 = 1 ⇒ 2 b + c + d = 2 − b + c + d − b + c + d = b 2 + c 2 ⇒ 4 b = c + d c + d = 0 − b + c + d = b 2 + c 2
⇔ 3 b = b 2 + c 2 b = b 2 + c 2 ⇔ 8 b 2 = c 2 ⇒ c = ± 2 2 b c = 0 ⇒ d = 0
Suy ra có ba mặt phẳng thỏa mãn.
Trường hợp 2: Mặt phẳng (P) đi qua trùng điểm B C ⇒ P : a x − 1 + b y + 1 + c z − 1 = 0
Do đó d A ; P = 3 b a 2 + b 2 + c 2 = 2 ; d B ; P = 2 a a 2 + b 2 + c 2 = 1
Suy ra 3 b = 4 a 2 a = a 2 + b 2 + c 2 ⇔ 3 b = 4 a 3 a 2 = b 2 + c 2 ( * )
Chọn a =3 suy ra (*)
⇔ b = 4 b 2 + c 2 = 27 ⇔ b = ± 4 c 2 = 11 ⇒ a ; b ; c = 3 ; 4 ; 11 , 3 ; − 4 ; 11 3 ; 4 ; − 11 , 3 ; − 4 ; − 11 .
Vậy có tất cả 7 mặt phẳng thỏa mãn yêu cầu bài toán.
Đáp án A.
Bốn tâm của các bi nhỏ cùng với tâm của các bi lớn tạo thành hình chóp tứ giác đều có cạnh đáy bằng 2 và cạnh bên bằng 3. Khi đó chiều cao của hình chóp đều này là 7 .
Khoảng cách từ tâm của bi lớn đến đáy của hình hộp là 7 + 1 .
Do đó chiều cao của hình hộp là 2 . 7 + 1 = 2 + 2 7 .
Đáp án A.
Bốn tâm của các bi nhỏ cùng với tâm của các bi lớn tạo thành hình chóp tứ giác đều có cạnh đáy bằng 2 và cạnh bên bằng 3. Khi đó chiều cao của hình chóp đều này là 7 .
Khoảng cách từ tâm của bi lớn đến đáy của hình hộp là 7 + 1 .
Do đó chiều cao của hình hộp là 2. 7 + 1 = 2 + 2 7 .
Chọn B