Cho hình vuông ABCD cạnh a, trên đường thẳng vuông góc với (ABCD) tại A ta lấy điểm S di động. Hình chiếu vuông góc của A lên SB, SD lần lượt là H, K. Thể tích lớn nhất của tứ diện ACHK bằng
A. a 3 6
B. a 3 2 12
C. a 3 3 16
D. a 3 6 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo hình vẽ. Ta sẽ sử dụng công thức
Đặt SA = x (x > 0) Tính được
Chứng minh được
Khi đó
Xét hàm ta có
Suy ra thể tích khối tứ diện lớn nhất bằng
Chọn C.
Bạn vẽ hình giúp mình nha!
a. Ta có: \(\left\{{}\begin{matrix}BC\perp AB\left(ABCD.là.hình.vuông\right)\\BC\perp SA\left(SA\perp\left(ABCD\right)\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)
Có: \(\left\{{}\begin{matrix}BC\perp AH\left(cmt\right)\\AH\perp SB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\) (đpcm)
Chứng minh tương tự với AK, ta cũng có: \(AK\perp\left(SCD\right)\Rightarrow AK\perp SC\)
Có: \(\left\{{}\begin{matrix}AH\perp SC\\AK\perp SC\\AI\perp SC\end{matrix}\right.\) \(\Rightarrow\)SC vuông góc với mặt phẳng chứa A,H,I,K
Hay A,H,I,K cùng nằm trong một mặt phẳng
b. Có: \(SC\perp\left(HIK\right)\Rightarrow SC\perp HK\)
Xét \(\Delta SAB\) vuông tại A và \(\Delta SAD\) vuông tại A có: \(\left\{{}\begin{matrix}SA.là.cạnh.chung\\AB=AD\left(ABCD.là.hình.vuông\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta SAB\) = \(\Delta SAD\) \(\Rightarrow AH=AK\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)
Áp dụng định lí Ta-let đảo ta có: HK//BD
Xét \(\Delta SBD\) có: SB=SD \(\Rightarrow\)\(\Delta SBD\) cân tại S
\(\Rightarrow\) SO vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow\) \(SO\perp BD\)
Mà BD//HK
\(\Rightarrow\)\(SO\perp HK\)
Ta có: \(\left\{{}\begin{matrix}SO\perp HK\\SC\perp HK\end{matrix}\right.\) \(\Rightarrow HK\perp\left(SAC\right)\) (đpcm) \(\Rightarrow HK\perp AI\) (đpcm)
Đáp án B
Ta có: B C ⊥ A B B C ⊥ S A ⇒ B C ⊥ M A
Mặt khác A M ⊥ S B ⇒ A M ⊥ S B C ⇒ A N ⊥ S C , tương tự A N ⊥ S C
Do đó S C ⊥ A M N , mặt khác ∆ S B C vuông tại B suy ra tan B S C ^ = B C S B = a S A 2 + A B 2 = 1 3
⇒ S B ; S C ^ = B S C ^ = 30 ° ⇒ S B ; A M N ^ = 60 ° .
Chọn đáp án C.