x+ 2căn(x-2) -17 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ĐKXĐ: x>=1
\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)
=>-2*căn x-1=-2
=>căn x-1=1
=>x-1=1
=>x=2
b: ĐKXĐ: x>=1
\(PT\Leftrightarrow\sqrt{x-1}\cdot\dfrac{1}{2}-\dfrac{9}{2}\cdot\sqrt{x-1}+\dfrac{24\sqrt{x-1}}{8}=-17\)
=>\(-\sqrt{x-1}=-17\)
=>\(\sqrt{x-1}=17\)
=>x-1=289
=>x=290
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(x^3=x\)
<=> \(x^3-x=0\)
<=> \(x\left(x^2-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
b, Viết lại đề đi bn
c, \(x^3-25x=0\)
<=> \(x\left(x^2-25\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
- <=>căn(x)[2can(x) - 2]=0
- <=>can(x)=0 hay 2can(x) - 2=0
- <=>x=0 hay2can(x)=2
- <=>x=0 haycan(x)=1
- <=>x=0 hay x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-4}-\dfrac{x+12\sqrt{x}}{x-16}\left(x\ge0;x\ne16\right)\\ A=\dfrac{2\sqrt{x}\left(\sqrt{x}+4\right)-x-12\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\\ A=\dfrac{2x+8\sqrt{x}-x-12\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+4}\)
\(x+2\sqrt{x-2}-17=0\)đk : x >= 2
\(\Leftrightarrow x-2+2\sqrt{x-2}+1-16=0\)
\(\Leftrightarrow\left(\sqrt{x-2}+1\right)^2=16\)
TH1 : \(\sqrt{x-2}+1=4\Leftrightarrow\sqrt{x-2}=3\Leftrightarrow x-2=9\Leftrightarrow x=11\)
TH2 : \(\sqrt{x-2}+1=-4\Leftrightarrow\sqrt{x-2}=-5\)( ktm )