K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

\(y=x^2-mx+m-1\)

\(\Delta\ge0\Leftrightarrow m^2-4\left(m-1\right)\ge0\Leftrightarrow m^2-4m+4\ge0\left(luôn-đúng\right)\)

\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=m\\x1x2=m-1\end{matrix}\right.\)

\(P=\dfrac{2x1x2+3}{x1^2+x2^2+2x1x2+2}=\dfrac{2m-2+3}{\left(x1+x2\right)^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Leftrightarrow P\left(m^2+2\right)=2m+1\)

\(\Leftrightarrow Pm^2-2m+2P-1=0\)

\(TH1:P=0\Rightarrow-2m-1=0\Leftrightarrow m=-\dfrac{1}{2}\Rightarrow maxP=0\)

\(TH2:P\ne0\Rightarrow\Delta\ge0\Leftrightarrow4-4P\left(2P-1\right)\ge0\)

\(\Leftrightarrow-8P^2+4P+4\ge0\Leftrightarrow-\dfrac{1}{2}\le P\le1\Rightarrow maxP=1\)

\(\Rightarrow maxP=1\Leftrightarrow m=1\)

 

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=3mx+1-m^2\)

\(\Leftrightarrow x^2-3mx+m^2-1=0\)

Để (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt

\(\Leftrightarrow\text{Δ}\ge0\)

\(\Leftrightarrow\left(-3m\right)^2-4\cdot1\cdot\left(m^2-1\right)\ge0\)

\(\Leftrightarrow9m^2-8m^2+4\ge0\)

\(\Leftrightarrow m^2+4\ge0\)(luôn đúng)

Suy ra: (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1\cdot x_2=m^2-1\\x_1+x_2=3m\end{matrix}\right.\)

Theo đề, ta có phương trình: \(3m=2\cdot\left(m^2-1\right)\)

\(\Leftrightarrow2m^2-2-3m=0\)

\(\Leftrightarrow2m^2-4m+m-2=0\)

\(\Leftrightarrow2m\left(m-2\right)+\left(m-2\right)=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\2m=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: Để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+x_2=2x_1x_2\) thì \(m\in\left\{2;-\dfrac{1}{2}\right\}\)

21 tháng 3 2021

Xét phương trình hoành độ giao điểm parabol $(P)$ và đường thẳng $(d)$

Có: $x^2=3mx+1-m^$

$⇔x^2-3mx+m^2-1=0(1)$

Xét phương trình (1) có dạng $ax^2+bx+c=0$ với
$\begin{cases}a=1 \neq 0\\b=-3m\\c=m^2-1\end{cases}$

$⇒pt(1)$ là phương trình bậc hai một ẩn $x$

Có $\delta=b^2-4ac=9m^2-4.1.(m^2-1)=5m^2+4>0 \forall m$

suy ra $pt(1)$ có 2 nghiệm phân biệt $x_1;x_2$

Theo hệ thức Viete có: $\begin{cases}x_1+x_2=\dfrac{-b}{a}=3m\\x_1.x_2=\dfrac{c}{a}=m^2-1\end{cases}$

Nên $x_1+x_2=2x_1.x_2$

$⇔3m=2.(m^2-1)$

$⇔2m^2-3m-2=0$

$⇔(m-2)(2m+1)=0$

$⇔$\(\left[{}\begin{matrix}m=2\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy $m∈2;\dfrac{-1}{2}$ thỏa mãn đề

 

b: Phương trình hoành độ giao điểm là:

\(x^2-\left(m-1\right)x-m=0\)

\(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1-x_2=2\\x_1+x_2=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=m+1\\x_1-x_2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m+\dfrac{1}{2}\\x_2=\dfrac{1}{2}m+\dfrac{1}{2}-2=\dfrac{1}{2}m-\dfrac{3}{2}\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=-m\)

\(\Leftrightarrow-m=\left(\dfrac{1}{2}m+\dfrac{1}{2}\right)\left(\dfrac{1}{2}m-\dfrac{3}{2}\right)\)

Đến đây bạn chỉ cần giải phương trình bậc hai là xong

Bài 1: 

a) Để (d) đi qua A(1;-9) thì

Thay x=1 và y=-9 vào (d), ta được:

\(3m\cdot1+1-m^2=-9\)

\(\Leftrightarrow-m^2+3m+1+9=0\)

\(\Leftrightarrow m^2-3m-10=0\)

\(\Leftrightarrow m^2-5m+2m-10=0\)

\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)

Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)

21 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)

=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2m+2=0\)

=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)

\(\Delta=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)

\(=4m^2+16m+16-8m^2-32m-24\)

\(=-4m^2-16m-8=-4\left(m^2+4m+2\right)\)

\(=-4\left(m^2+4m+4-2\right)\)

\(=-4\left[\left(m+2\right)^2-2\right]\)

Để (P1) cắt (P2) tại hai điểm thì \(\Delta>=0\)

=>\(\left(m+2\right)^2-2< =0\)

=>\(\left(m+2\right)^2< =2\)

=>\(-\sqrt{2}< =m+2< =\sqrt{2}\)

=>\(-\sqrt{2}-2< =m< =\sqrt{2}-2\)

\(P=\left|x_1\cdot x_2-3\left(x_1+x_2\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}-3\cdot\dfrac{-2m-2}{2}\right|\)

\(=\left|\dfrac{m^2+4m+3+6m+6}{2}\right|=\left|\dfrac{m^2+10m+9}{2}\right|>=0\)

Dấu '=' xảy ra khi |m2+10m+9|=0

=>(m+1)(m+9)=0

=>\(\left[{}\begin{matrix}m=-1\left(nhận\right)\\m=-9\left(loại\right)\end{matrix}\right.\)

20 tháng 6 2019

ĐÁP ÁN: A