Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi O là tâm hình vuông ABCD, S là điểm đối xứng với O qua CD’ (như hình vẽ). Thể tích của khối đa diện ABCDSA’B’C’D’ bằng
A. 2 a 3 3
B. 3 a 3 2
C. 7 a 3 6
D. 4 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có
Vì S là điểm đối xứng với O qua CD' nên
Do đó
Vậy
Chọn D
Khối đa diện ABCDSH được chia thành hai khối chóp S.ABCD và H.SCD
Vì H là điểm đối xứng của O qua SM nên
Vậy thể tích khối đa diện cần tính bằng
Chọn D
Gọi P, Q lần lượt là trung điểm của BC và C'D'.
Ta có S ∆ O P N = 1 4 S ∆ B C D = 1 8 S A B C D = a 2 8 ⇒ V O P N . O ' M Q = a 3 8
mà
V O O ' M N = V O P N . O ' M Q - V M . O P N - V N . O ' M Q = a 3 8 - 1 3 . a 3 8 - 1 3 . a 3 8 = a 3 24
Chọn đáp án D
Gọi
Khi đó góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 45o
Ta có: ∆BAD đều
Thể tích khối chóp S.ABCD bằng:
Ta có: N là trung điểm SC nên
Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD bằng:
Ta có K là trọng tâm tam giác SMC
Chọn đáp án D
Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD:
FOR REVIEW |
Tam giác cân có một góc bằng 60 ° thì là tam giác đều. |
Đáp án D
S O ' O N = 1 2 OO'.ON= 1 2 . a . a 2 = a 2 4 ; M O ' = a 2 . V M O ' O N = 1 3 M O ' . S O ' O N = a 3 24 .
Chọn đáp án C.