giải 5x-3y =-1và 3x+4y=11. Tính x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x-3y = -1 => 15x -9y = -3(1)
3x+4y= 11=> 15x + 20y= 55(2)
Lấy (2)-(1) ta có 29y = 58 => y =2 => x= 1
a, Ta có : \(\left\{{}\begin{matrix}3x+2y=-2\\-x+4y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3\left(4y-3\right)+2y=-2\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}12y-9+2y=-2\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14y=7\\x=4y-3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{1}{2}\\x=\frac{4.1}{2}-3=-1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-1;\frac{1}{2}\right)\)
b, Ta có : \(\left\{{}\begin{matrix}x+2y=11\\5x-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\5\left(11-2y\right)-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\55-10y-3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2y\\-13y=-52\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11-2.4=3\\y=4\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)
c, Ta có : \(\left\{{}\begin{matrix}10x-9y=1\\15x+21y=36\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}30x-27y=3\\30x+42y=72\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x-9y=1\\-69y=-69\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10x-9=1\\y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(1;1\right)\)
d, Ta có : \(\left\{{}\begin{matrix}2x+y=3\\x+y=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2x\\x+2-2x=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2x\\2-x=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3-2.0=3\\x=0\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(0;3\right)\)
e, Ta có : \(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\2\left(2-y\right)-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\4-2y-3y=9\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-y\\-5y=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2+1=3\\y=-1\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-1\right)\)
f, Ta có : \(\left\{{}\begin{matrix}x-2y=11\\5x+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\5\left(11+2y\right)+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\55+10y+3y=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=11+2y\\13y=-52\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;-4\right)\)
g, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=9-5=4\\x=3\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(3;4\right)\)
h, Ta có : \(\left\{{}\begin{matrix}5x+3y=-7\\3x-y=-8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+3\left(3x+8\right)=-7\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}5x+9x+24=-7\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}14x=-31\\y=3x+8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{31}{14}\\y=3.\left(-\frac{31}{14}\right)+8=\frac{19}{14}\end{matrix}\right.\)
Vậy hệ phương trình có duy nhất 1 nghiệm là \(\left(x;y\right)=\left(-\frac{31}{14};\frac{19}{14}\right)\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
a) \(\left\{{}\begin{matrix}x-y=3\left(1\right)\Rightarrow y=x-3\left(3\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow3x-4\left(x-3\right)=2\)
\(\Leftrightarrow3x-4x+12=2\)
\(\Leftrightarrow-x=-10\Leftrightarrow x=10\)
thay x=10 vào (3)\(\Rightarrow y=10-3=7\)
Nghiệm của hệ \(\left\{10;7\right\}\)
b)\(\left\{{}\begin{matrix}7x-3y=5\left(1\right)\\4x+y=2\left(2\right)\Rightarrow y=2-4x\left(3\right)\end{matrix}\right.\)
thay (3) vào (1)\(\Rightarrow7x-3\left(2-4x\right)=5\)
\(\Leftrightarrow7x-6+12x=5\)
\(\Leftrightarrow19x=11\Leftrightarrow x=\dfrac{11}{19}\)
thay \(x=\dfrac{11}{19}vào\left(3\right)\)\(\Rightarrow y=2-4\dfrac{11}{19}=-\dfrac{6}{19}\)
nghiệm của hệ \(\left\{\dfrac{11}{19};\dfrac{-6}{19}\right\}\)
c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)
\(\Leftrightarrow-10-15y-4y=1\)
\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)
thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)nghiệm của hệ \(\left\{\dfrac{-5}{9};\dfrac{-11}{19}\right\}\)
c)\(\left\{{}\begin{matrix}x+3y=-2\left(1\right)\Rightarrow x=-2-3y\left(3\right)\\5x-4y=1\left(2\right)\end{matrix}\right.\)
thay (3) vào (2)\(\Rightarrow5\left(-2-3y\right)-4y=1\)
\(\Leftrightarrow-10-15y-4y=1\)
\(\Leftrightarrow-19y=11\Leftrightarrow y=\dfrac{-11}{19}\)
thay \(y=\dfrac{-11}{19}vào\left(3\right)\Rightarrow x=-2-3\left(\dfrac{-11}{19}\right)=\dfrac{-5}{19}\)
nghiệm của hệ\(\left\{\dfrac{-5}{19};\dfrac{-11}{19}\right\}\)
CHÚC BẠN HỌC TỐT !
-có người nhờ t làm
\(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-3y=9\left(1\right)\\3x-4y=2\left(2\right)\end{matrix}\right.\) lấy (1)-(2) tìm được x;sau đó dễ dàng có y
\(\left\{{}\begin{matrix}7x-3y=5\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}28x-12y=20\left(1\right)\\28x+7y=14\left(2\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+3y=-2\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\left(1\right)\\5x-4y=11\left(2\right)\end{matrix}\right.\)
Gt: Nhân sao cho cả 2 pt xuất hiện chung 1 thừa số,trừ đi chỉ còn 1 x or y
5x-3y = -1 => 15x -9y = -3(1)
3x+4y= 11=> 15x + 20y= 55(2)
Lấy (2)-(1) ta có 29y = 58 => y =2 => x= 1
tick cho mình lên 160 nha bạn