K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

△ ABC =  △ CDA (c.c.c) ⇒ S A B C = S C D A  (1)

△ EFC =  △ CHE (c.c.c) ⇒ S E F C = S C H E (2)

Từ (1) và (2) ⇒  S A B C - S E F C = S C D A - S C H E

Hay  S A B C F E = S A E H D

8 tháng 7 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình ABCFE không phải là tứ giác lồi vì nó nằm trên hai nửa mặt phẳng có bờ là đường thẳng chứa cạnh CF.

25 tháng 9 2018

2 tháng 8 2016

A B C D M N I K

nối BD và AC

trong tam giác ABC ta có: M và N lần luợt là trung đỉêm của AB và AC

=> MN là đuờng trung bình của tam giác ABC

=> MN//AC(

trong tam giác ADC ta có I và K lần luợt là trung điểm của DC và DA

=> KI là đuờng trung bình của tam giác ADC

=> KI//AC

ta có: KI//AC

        MN//AC

=> KI//MN(1)

trong tam giác ABD có M và K lần luợt là trung điểm của AB và AD

=> MK là đuờng trung bình của tam giác ADB 

=> MK//DB

trong tam giác CDB có I và N lần luợt là trung điểm của DC và CB

=> IN là đuờng trung bình của tam, giác CDB

=>IN//BD

ta có: MK//DB

         IN//DB

=> MK//IN(2)

từ (1)(2)=> MK//IN

                  MN//KI

=> MNIK là hình bình hành

2 tháng 8 2016

Bài 1:Vẽ đường chéo BD
Xét tam giác ADB có:
M là trung điểm của AB
K là trung điểm của AD
=>KM là đường trung bình của tam giác ADB
=>KM//DB(1) và KM=1/2 DB(3)
Xét tam giác BCD có:
N là trung điểm của BC
I là trung điểm của DC
=>NI là đường trung bình của tam giác BCD
=>NI//DB(2) và NI=1/2DB(4)
Từ (1) và (2)=>KM//NI( //DB)(5)
Từ (3) và (4)=>KM=NI(=1/2 DB)(6)
Từ (5)  và (6)=>KMNI là hình bình hành (dhnb3)
 

27 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

△ ABE =  △ CDF (g.c.g) ⇒ S A B E = S C D F  (l)

△ AED =  △ CFB (g.c.g) ⇒ S A E D = S C F B (2)

Từ (1) và (2) ⇒  S A B E + S C F B = S C D F + S A E D

Hay  S A B C F E = S A D C F E

30 tháng 1 2018

A B D C H J K O I E

Gọi O là giao điểm của AC và BD. Theo tính chất hình bình hành thì O là trung điểm AC và BD.

Gọi H, I, J, L lần lượt là chân các đường cao hạ từ D, O, C, B xuống đường thẳng xy.

Ta thấy ngay DH // OI // CJ // KB.

Xét tam giác ACJ có O là trung điểm AC, OI // CJ nên OI là đường trung bình tam giác hay CJ = 2OI.    (1)

Xét hình thang vuông HDBK có O là trung điểm BD, OI // DH // BK nên OI là đường trung bình hình thang.

Vậy thì \(DH+BK=2OI\)                                                                                                                  (2)

Từ (1) và (2) suy ra CJ = DH + BK.

Suy ra \(\frac{1}{2}CJ.AE=\frac{1}{2}HD.AE+\frac{1}{2}BK.AE\)  hay \(S_{ACE}=S_{ADE}+S_{ABE}\)

3 tháng 2 2018

1 A B C D K 1 2 1 2 1 2

Ta có do \(K\in CD;CD//AB\Rightarrow\widehat{K1}=\widehat{A2}\)

Mà \(\widehat{A2}=\widehat{A1}\)(AK LÀ PHÂN GIÁC)

\(\Rightarrow\widehat{K1}=\widehat{A1}\Rightarrow\Delta ADK\)cân tại D => AD=DK

Tương tự ta cm được BC=CK 

=> AD+BC=DK+CK

Mà K nằm giữa C và D nên AD+BC=DK+CK=DC(đpcm)

21 tháng 10 2021

1) Vì ABCD là hình bình hành

=> OA=OC, OB=OD

Ta có: OM=OA/2

           OP=OC/2

Mà OA=OC => OM=OP

Cm tương tự ta được OQ=ON

Tứ giác MNPQ có OM=OP. OQ=ON

=> MNPQ là hình bình hành

2) Tứ giác ANCQ có OA=OC (cmt), OQ=ON (cmt)

Suy ra tứ giác ANCQ là hình bình hành

Tứ giác BPDM có OB=OD (cmt), OM=OP (cmt)

Suy ra tứ giác BPDM là hình bình hành