K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

Ta có: 4n-5 chia hết cho n-3

=>(4n-12)+12-5 chia hết cho n-3

=>4(n-3)+7 chia hết cho n-3

Mà 4(n-3) chia hết cho n-3

=>7 chia hết cho n-3

=>n-3 thuộc Ư(7)={1;7;-1;-7}

=>n thuộc {4;10;2;-4}

26 tháng 1 2016

trả lời xong tick cho mình nhé ^.^

Ta có 

                  4n - 5  chia hết  n - 3

Suy ra    (4n-3) - 2 chia hết  n - 3

Suy ra               2 chia hết  n - 3

Suy ra       n - 3  thuộc Ư(2) = {1,-1,2,-2}

Ta có bảng sau

 n - 3

1-12-2
n4 (thuộc Z)3 (thuộc Z)5 (thuộc Z)2(thuộc Z)

 

Vậy x thuộc { 4,3,5,2}

Dấu thuộc cậu ghi kí hiệu nhé

 

27 tháng 1 2016

4n - 5 chia hết cho n - 3

=> 4n - 12 + 7 chia hết cho n - 3

=> 4.(n - 3) + 7 chia hết cho n - 3

Mà 4.(n - 3) chia hết cho n - 3

=> 7 chia hết cho n - 3

=> n - 3 thuộc Ư(7) = {-7; -1; 1; 7}

=> n thuộc {-4; 2; 4; 10}.

27 tháng 1 2016

Ta có: 4n-5 chia hết cho n-3

=>(4n-12)+12-5 chia hết cho n-3

=>4(n-3)+7 chia hết cho n-3

Mà 4(n-3) chia hết cho n-3

=>7 chia hết cho n-3

=>n-3 thuộc Ư(7)={1;7;-1;-7}

=> n thuộc {4;10;2;-4}

tick nha

27 tháng 12 2015

20124n+3-3

=20124n.20123-3

=.......6  .   ........8   -  3

=.............5    chia hết cho 5

(n+5)/(n+1)=[(n+1) +4]/(n+1) 
=1 +4/(n+1) 
chia hết khi VP là số tự nhiên 
---> 4/(n+1) là số tự nhiên 
--> n+1 bằng 1,2,4 
---> n bằng 0, 1 , 3

và ngược lại  

24 tháng 1 2016

n-1 chia hêt cho n+5

=>n+5-6 chia hết cho n+5

=>6 chia hết cho n+5

=>n+5 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc{-6;-4;-7;-3;-11;1}

n + 5 chia hết cho n - 1

=>n-1+6 chia hết cho n-1

=>6 chia hết cho n-1

=>n-1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}

=>n thuộc {0;2;-1;3;-2;4;-5;7}

8 tháng 11 2015

ta có : 2n^2 +n-7 chia hết cho n- 2

       (2n^2 +n-7)-4n(n-2) chia hết cho n-2

      2n^2+n-7 - 2n^ 2 -4 chia hết cho n-2

     n-7 - 4 chia hết cho n-2

    n-2-9 chia hết cho n-2

=> -9 chia hết cho n-2

=> n-2= -1;1;-3;3;-9;9

=> n= 1;3;-1;5;-7;11

     

10 tháng 8 2015

4n - 5 chia hết cho n-3

=> 4n - 12 + 7 chia hết cho n - 3

=> 7 chia hết cho n-3

=> n - 3 \(\in\)U(7)

U(7) = {-7;-1;1;7}

n - 3 = -7

=> n = -4

n - 3 = -1

n = 2

n - 3 = 1

n = 4

n - 3 = 7

n = 10

Vậy x \(\in\){-4;2;4;10}

20 tháng 7 2018

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

5 tháng 7 2017

\(A=3.\left(3^4\right)^{10}+2\)

Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5

\(B=2.\left(2^4\right)^n+3\)

Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5

Trường hợp còn lại là tương tự

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.