Cho hình thang cân ABCD, AB ∥ CD, AB=6cm, CD=2cm, AD=BC= 13 cm. Quay hình thang ABCD xung quanh đường thẳng AB ta được một khối tròn xoay có thể tích là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi V là thể tích của khối tròn xoay cần tính, khi đó V = V 1 − V 2 với
V1 là thể tích khối trụ có chiều cao h 1 = A B , bán kính R = A D → V 1 = π R 2 h 1 = 2 π a 3
V 2 là thể tích khối trụ có chiều cao h 1 = A B − C D , bán kính R = A D → V 2 = 1 3 π r 2 h 2 = π a 3 3
Vậy thể tích cần tính là V = V 1 − V 2 = 2 π a 3 − π a 3 3 = 5 π a 3 3
Chọn đáp án A
Gọi (T) là khối trụ có đường cao là 2a, bán kính đường tròn đáy là a và (N) là khối nón có đường cao là a, bán kính đường tròn đáy là a
Đáp án A
Ta có: V = π A H 2 . A B + 1 3 π A H 2 B H + C K = 2 π A H 2 + 2 3 π A H 2
= 6 π ⇔ 2 A H 2 + 2 3 A H 2 = 6 ⇔ A H = 3 2 ⇒ S A B C D = A B + C D 2 . A H = 9 2