Biết x = - 2 là một trong các nghiệm của phương trình: x 3 + a x 2 - 4 x - 4 = 0 . Với a tìm được ở câu a, tìm các nghiêm còn lại của phương trình bằng cách đưa phương trình đã cho về dạng phương trình tích.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-2 vào pt,ta được:
-8+4a+8-4=0
=>4a-4=0
hay a=1
b: Pt sẽ là \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
=>(x+1)(x-2)(x+2)=0
hay \(x\in\left\{-1;2;-2\right\}\)
a) do x=-2 l;à nghiệm của Pt nên ta thay vào PT . Ta được:
-8+4a+8-4=0
<=> a= 1
vậy a=1
b) với a =1 thay vào PT ta được pT trở thành :
\(x^3+x^2-4x-4=0\)
<=> \(x^3+2x^2-x^2-2x-2x-4=0\)
<=> \(x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(x^2-x-2\right)=0\)
<=>\(\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)
<=>\(\left[\begin{array}{nghiempt}x+2=0\\x-2=0\\x+1=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=2\\x=-2\\x=-1\end{array}\right.\)
vậy nghiệm còn lại là -1 và 2
a ) Số a phải thõa mãn điều kiện \(\left(-2\right)^3+a\left(-2\right)^2-4\left(-2\right)-4=0\)
\(\Rightarrow a=1\)
b ) Với \(a=1\) , ta có phương trình \(x^3+x^2-4x-4=0\)
Ta phân tích vế trái của phương trình thành tích như sau :
\(x^3+x^2-4x-4=\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Đáp số : \(S=\left\{-1;-2;2\right\}\)
Mình chỉ hướng dẫn như vậy thôi .
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)
\(\Rightarrow a=7\)
b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow-x^3-7x^2+4x+4=0\)
\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)
+) 1 - x = 0 thì x = 1
+) \(x^2+8x+4=0\)
\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)
Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)
Cho phương trình (ẩn x): x3 + ax2 – 4x – 4 = 0
a) Xác định m để phương trình có một nghiệm x = 1.
b) Với giá trị m vừa tìm được, tìm các nghiệm còn lại của phương trình.
Trên phương trình có m đâu mà tìm m vậy ? Mình sửa :
\(x^3+mx^2-4x-4=0\)(1)
a) Thay \(x=1\), phương trình (1) trở thành :
\(1^3+m.1^2-4.1-4=0\)
\(\Leftrightarrow1+m-4-4=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Vậy \(x=1\Leftrightarrow m=7\)
b) Thay \(m=7\), phương trình (1) trở thành :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4\right)^2-12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{2\sqrt{3}-4;-2\sqrt{3}-4\right\}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\sqrt{3}-4;-2\sqrt{3}-4\right\}\)
Với a = 1, ta có phương trình: x 3 + a x 2 - 4 x - 4 = 0
⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2 – 4)(x + 1) = 0
⇒ (x + 2)(x – 2)(x + 1) = 0
⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0
x + 2 = 0 ⇒ x = -2
x – 2 = 0 ⇒ x = 2
x + 1 = 0 ⇒ x = -1
Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.