Tìm giá trị lớn nhất M của hàm số y = x 2 + 2 x + 2 x + 1 trên đoạn - 1 2 ; 2 .
A. M = 5 2
B. M = 2
C. M = 10 3
D. M = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Với x ∈ − 2 ; 1 ta có
y = − x 2 + 2 ⇒ y ' = − 2 x ; y ' = 0 ⇔ x = 0.
Ta có y − 2 = − 2 ; y 0 = 2 ; y 1 = 1
Xét x ∈ 1 ; 3 ta có
y = x ⇒ y ' = 1 > 0.
Ta có y 3 = 3
Suy ra max − 2 ; 3 y = 3
\(f'\left(x\right)=\frac{\frac{\sqrt{x+1}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x+1}}}{x+1}=\frac{1}{\sqrt{x}\left(\sqrt{x+1}\right)^3}>0;\forall x\in\left(0;4\right)\)
Mà f(x) liên tục trên [0;4] nên hàm số đồng biến trên [0;4]
\(\Rightarrow Maxf\left(x\right)_{\left[0;4\right]}=f\left(4\right)\)
YCBT \(\Leftrightarrow\begin{cases}m>1\\f\left(4\right)\le3\end{cases}\) \(\Leftrightarrow\begin{cases}m>1\\\frac{4+m}{\sqrt{5}}\le3\end{cases}\)\(\Leftrightarrow1< m< 3\sqrt{5}-4\)
\(y'=\dfrac{3}{\left(x+2\right)^2}>0\Rightarrow\) hàm đồng biến trên đoạn đã cho
\(\Rightarrow\max\limits_{\left[0;1\right]}y=y\left(1\right)=0\)
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
Chọn C.