K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

2 x + 5 - x 2 - 5 x = 0

⇔ 2(x + 5) – ( x 2  + 5x) = 0

⇔ 2(x + 5) – x(x + 5) = 0

⇔ (2 – x)(x + 5) = 0

⇔ 2 – x = 0 hoặc x + 5 = 0

• 2 – x = 0 ⇔ x = 2

• x + 5 = 0 ⇔ x = -5

Vậy x = 2 hoặc x = -5.

21 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

22 tháng 11 2017

a, => x^2+5 = 0

=> x^2=-5 ( vô lí vì x^2 >= 0)

=> ko tồn tại x tm bài toán

b, Vì x^2-5 > x^2-25 

Mà (x^2-5): (x^2-25) < 0 

=> x^2-5 >0 và x^2-25 <0

=> 5 < x^2 < 25

=> \(x>\sqrt{5}\)hoặc \(x< -\sqrt{5}\) và -5 < x < 5

=> -5 < x < -\(\sqrt{5}\)hoặc \(\sqrt{5}\)< x < 5

k mk nha

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

25 tháng 7 2018

\(\left(x^2-5\right)\left(x^2+1\right)=0\)

<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)

câu còn lại tương tự nha

12 tháng 12 2021

Answer:

\(3x^2-4x=0\)

\(\Rightarrow x\left(3x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)

\(\left(x^2-5x\right)+x-5=0\)

\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

\(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)

\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

\(5x\left(x-3\right)-x+3=0\)

\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)

\(x^2-2x+5=0\)

\(\Rightarrow\left(x^2-2x+1\right)+4=0\)

\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)

Vậy không có giá trị \(x\) thoả mãn

\(x^2+x-6=0\)

\(\Rightarrow x^2+3x-2x-6=0\)

\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)

24 tháng 8 2021

a,\(\left(x-1\right)^2-\left(2x\right)^2=0< =>\left(x-1-2x\right)\left(x-1+2x\right)=0\)

\(< =>\left(-x-1\right)\left(3x-1\right)=0< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)

b,\(\left(3x-5\right)^2-x\left(3x-5\right)=0< =>\left(3x-5\right)\left(3x-5-x\right)=0\)

\(< =>\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{5}{2}\end{cases}}\)

24 tháng 8 2021

a, \(\left(x-1\right)^2-\left(2x\right)^2=0\Leftrightarrow\left(x-1-2x\right)\left(x-1+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow x=-1;x=\frac{1}{3}\)

b, \(\left(3x-5\right)^2-x\left(3x-5\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x-5-x\right)=0\Leftrightarrow\left(3x-5\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{5}{3};x=\frac{5}{2}\)

17 tháng 11 2021

\(a.\left[{}\begin{matrix}2x+9=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(b.\left[{}\begin{matrix}x-3=0\\x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

1. $|x-1|-|5-x|=0$

$\Leftrightarrow |x-1|=|5-x|$

$\Leftrightarrow x-1=5-x$ hoặc $x-1=x-5$

$\Leftrightarrow x=3$ hoặc $1=5$ (vô lý)

Vậy $x=3$
---------------------------

2. 

Nếu $x\geq 4$ thì pt trở thành:

$x-4+x-\frac{3}{2}=5$

$\Leftrightarrow x=5,25$ (thỏa mãn)

Nếu $\frac{3}{2}\leq x< 4$ thì:

$4-x+x-\frac{3}{2}=5\Leftrightarrow \frac{5}{2}=5$ (vô lý)

Nếu $x< \frac{3}{2}$ thì:
$4-x+\frac{3}{2}-x=5$

$\Leftrightarrow x=0,25$ (thỏa mãn)