Có bao nhiêu giá trị nguyên của tham số m để điểm M 2 m 3 ; m tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số y = 2 x 3 - 3 2 m + 1 x 2 + 6 m m + 1 x + 1 C một tam giác có diện tích nhỏ nhất.
A. 0
B. 1
C. 2
D. Không tồn tại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ: D = R .
TH1: m = 1 . Khi đó hàm số trở thành:
BBT:
Từ đó ta suy ra BBT của hàm số y = f x như sau:
Hàm số có 3 điểm cực trị, do đó m = 1 thỏa mãn.
TH2: m ≠ 1 Để hàm số y = f x có 3 điểm cực trị thì hàm số y = f x có 2 điểm cực trị trái dấu.
Ta có:
Để hàm số có 2 cực trị trái dấu ⇔ f x = 0 có 2 nghiệm trái dấu
Chọn B.
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Chọn đáp án A
Phương pháp
Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.
Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x 2 + ( m + 3 ) x + m 2 = 0 phải có hai nghiệm phân biệt khác 1
Do đó với -1<m<3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt
Đáp án D.
Đặt
f x = 3 x 4 − 4 x 3 − 12 x 2 → f ' x = 12 x 3 − 12 x 2 − 24 x , ∀ x ∈ ℝ .
Khi đó y = f x + m ⇒ y ' = f ' x . f x + m f x + m .
Phương trình y ' = 0 ⇔ f ' x = 0 f ' x = − m ( * )
Để hàm số đã cho có 7 điểm cực trị
⇔ y ' = 0 có 7 nghiệm phân biệt.
Mà f ' x = 0 có 3 nghiệm phân biệt
⇒ f x = − m có 4 nghiệm phân biệt.
Dựa vào BBT hàm số f x , đẻ (*) có 4 nghiệm phân biệt
⇔ − 5 < − m < 0 ⇔ m ∈ 0 ; 5 .
Kết hợp với m ∈ ℤ suy ra có tất cả 4 giá trị nguyên cần tìm.
Chọn B.
Phương pháp: v
Cách giải: Ta có
Dấu bằng xảy ra khi m = 0.
Vậy có duy nhất một giá trị của m thỏa mãn yêu cầu bài toán.