Đặt M = a log b c Đẳng thức nào dưới đây đúng với mọi a,b,c dương khác 1?
A. M = b log b c
B. M = c log a b
C. M = 1 c log b 1 a
D. M = 1 a log 1 b 1 c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
Hàm số \(y=log_cx\) nghịch biến
\(\Rightarrow0< c< 1\) và các hàm \(y=log_ax,y=log_bx\) đồng biến nên \(a,b>1\)
Ta chọn \(x=100\Rightarrow log_a>log_b100\Rightarrow a< b\Rightarrow b>a>c\)
\(\Rightarrow B\)
a) \({\log _c}b = {\log _a}b.{\log _c}a \Leftrightarrow {a^{{{\log }_c}b}} = {a^{{{\log }_a}b.{{\log }_c}a}} \Leftrightarrow {c^{{{\log }_c}b}} = {\left( {{c^{{{\log }_c}a}}} \right)^{{{\log }_a}b}} \Leftrightarrow b = {a^{{{\log }_a}b}} \Leftrightarrow b = b\) (luôn đúng)
Vậy \({\log _c}b = {\log _a}b.{\log _c}a\)
b) Từ \({\log _c}b = {\log _a}b.{\log _c}a \Leftrightarrow {\log _a}b = \frac{{{{\log }_c}b}}{{{{\log }_c}a}}\)
a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)
b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)
\(=\dfrac{2a+b}{a+b}\)
c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)
\(=\dfrac{a+b}{1-a}\)
Lời giải:
Đặt \(\left\{\begin{matrix} \log_ab=x\\ \log_bc=y\\ \log_ca=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \log_ba=\frac{1}{x}\\ \log_cb=\frac{1}{y}\\ \log_ac=\frac{1}{z}\end{matrix}\right. \). và \(xyz=1\)
Do \(a,b,c>1\Rightarrow x,y,z>0\)
Ta có:
\(P=\log_a(bc)+\log_b(ac)+4\log_c(ab)\)
\(=\log_ab+\log_ac+\log_ba+\log_bc+4\log_ca+4\log_cb\)
\(=x+\frac{1}{z}+\frac{1}{x}+y+4z+\frac{4}{y}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\left\{\begin{matrix} x+\frac{1}{x}\geq 2\sqrt{1}=2\\ y+\frac{4}{y}\geq 2\sqrt{4}=4\\ \frac{1}{z}+4z\geq 2\sqrt{4}=4\end{matrix}\right.\) \(\Rightarrow P\geq 2+4+4=10\)
\(\Rightarrow m=10\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\rightarrow x=1\\ y=\frac{4}{y}\rightarrow y=2\\ \frac{1}{z}=4z\rightarrow z=\frac{1}{2}\end{matrix}\right.\) (thỏa mãn)
Suy ra \(n=\log_bc=y=2\)
\(\Rightarrow m+n=12\)
Đáp án B