Xét các số phức z thỏa mãn z - 1 + i ( z + z ¯ ) i + 1 là số thực. Tập hợp các điểm biểu diễn các số phức z 2 là parabol có tọa độ đỉnh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : w - 1 + 2 i = z ⇔ w = z + 1 - 2 i . Suy ra quỹ tích các điểm biểu diễn số phức w có được từ quỹ tích các điểm biểu diễn số phức z bằng cách thực hiện phép tịnh tiến theo v → = ( 1 ; - 2 ) . Do đó quỹ tích quỹ tích các điểm biểu diễn số phức w là đường tròn tâm (-1;1) bán kính bằng 3.
Đáp án D
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z1 được biểu diễn bởi điểm A(1;-1).
Em có: |z - 1 + i| = 2 => MA = 2
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:
Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z 1 được biểu diễn bởi điểm A(1;-1).
Em có: z − 1 + i = 2 ⇒ MA = 2 .
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình: x − 1 2 + y + 1 2 = 4 .
Cách 2: Đặt z = x + yi , x ; y ∈ ℝ . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
z − 1 + i = 2 ⇔ x − 1 + y + 1 i = 2 ⇔ x − 1 2 + y + 1 2 = 2 ⇔ x − 1 2 + y + 1 2 = 4
Vậy tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
x − 1 2 + y + 1 2 = 4 .
Đáp án A.